检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华中科技大学数字化工程与仿真中心,湖北武汉430074
出 处:《人民长江》2007年第1期8-9,104,共3页Yangtze River
基 金:科技部重大基础研究前期研究专项资助项目(2004CCA02500)
摘 要:针对水库调度函数的复杂性、非线性,以及水文资料的有限性,尝试用支持向量机技术建立水库优化调度函数。不同于神经网络等传统以训练误差最小化作为优化目标,SVM采用结构风险最小化原则,把训练误差作为优化问题的约束,以置信范围最小化作为优化目标。因此,SVM的泛化能力要明显优于神经网络等传统学习方法。以洪家渡水电站42 a的径流资料对不同算法进行了比较,证明SVM方法的调度函数具有更好的性能。
关 键 词:水库优化调度函数 支持向量机(SVM) 回归
分 类 号:TV697.11[水利工程—水利水电工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.30