检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安电子科技大学智能信息处理研究所,陕西西安710071
出 处:《西安电子科技大学学报》2007年第1期68-70,105,共4页Journal of Xidian University
基 金:国家自然科学基金(60372050;60133010);国家863计划(2002AA135080)
摘 要:为了提高支撑矢量机的泛化性能,利用l倍交叉筛选和控制样本特征属性策略建立了集成支撑矢量机,该集成策略加强了子分类器之间的互异性,进一步提高了集成学习机的分类性能,提高了学习机的泛化性能,同时具有较好的鲁棒性.Ensemble Methods are learning algorithms that construct a collection of individual classifiers which are independent and yet accurate, and then classify a new data point by taking vote of their predictions. The support Vector Machine (SVM) presents excellent performance in solving the problems with a small number of simple, nonlinear and local minima. The combination of the Support Vector Machine with Ensemble methods has been done by Hyun-Chul Kim based on the bagging algorithm, yet it does not show high robustness for its randomicity. In this paper, by a deep investigation into the principle of the SVM and the Ensemble Method, we propose two possible ways, cross validated committees and manipulating of the input feature strategies, to construct the SVM ensemble, which provides strong robustness according to experimental results.
分 类 号:TP301[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15