检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:姚战军[1] 郑坚[1] 倪新华[1] 邢士勇[1]
出 处:《机械强度》2007年第1期72-76,共5页Journal of Mechanical Strength
摘 要:用细观力学的方法对陶瓷颗粒增强金属基复合材料进行研究,把材料简化为三相模型,陶瓷粒子和基体壳简化为椭球形二相胞元,用Mori-Tanaka法建立二相胞元的刚度预报模型。结果表明,二相胞元为横观各向同性,具有5个独立的弹性常数。据二相胞元方位的随机性,由应力应变换轴公式和物理方程确定复合材料的平均应变,进而得到复合材料的等效弹性模量和等效泊松比以及等效刚度模量的理论计算公式,并通过对所建模型的分析,确定各参量与陶瓷颗粒含量之间的关系。Metallic matrix composites reinforced by the ceramic particles was researched use the micro-mechanics method. The compesites was simplified to three phase model, the ceramic particle and the matrix around it was simplified to two phase cell, then the stiffness prediction model of the two phase cell was constructed use the Mori-Tanaka method. The results of the research show that the two phase cell is transverse isotropy and has five independent elastic constants. Because the two phase cells are randomly oriented in the matrix, the composites even strain can be gotten by the strain coordinate transform and physics equation. According to the even strain, the elastic modulus, Poisson's ratio and shear modulus of the composites are gotten. At last, the relations between the parameters and the particle content are ascertained.
关 键 词:颗粒增强复合材料 有效弹性模量 MORI-TANAKA方法 二相胞元
分 类 号:TB333[一般工业技术—材料科学与工程] O346[理学—固体力学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.188