检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中南大学信息科学与工程学院,长沙410083
出 处:《计算机科学》2007年第2期181-185,共5页Computer Science
摘 要:对本体(ontology)的研究在计算机领域变得越来越广泛,但手工构造本体是一项繁琐而辛苦的任务,还会导致知识获取瓶颈。本体学习技术是利用本体工程技术和机器学习技术等众多学科技术来实现本体的(半)自动构建。本体的学习可以面向文本、知识库、结构化数据、半结构化数据和无结构数据。本文主要介绍了面向文本的本体学习,并对其中的学习内容、学习方法、学习工具、学习过程和系统评价等关键技术进行了说明,特别介绍了学习方法中的基于统计的方法、词汇句法模式法和形式概念分析法并对其优缺点做了简单的分析。Research on ontology is increasingly becoming widespread in the computer science community. But the manual construction of ontology is a time-consuming task and easily leads to the bottleneck of knowledge acquisition. Ontology learning aims at the integration of a multitude of disciplines such as ontology engineering techniques and machine learning techniques to construct the ontology (semi)automatically. There are different ontology learning approaches according to the type of input: ontology learning from text, from knowledge base, from structured-data, from semistructured data and from unstructured data. Ontology learning from text is mainly introduced. The key technologies of ontology learning from text are presented, including learning content, learning approach, learning tool, learning process and system evaluation. Authors especially introduce the statistical method, lexico-syntactic pattern method and formal concept analysis method and simply analyze the advantage and disadvantage of these methods.
分 类 号:TP311.13[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.38