使用K-L变换进行图象压缩的一种新方法  被引量:3

A New Method for Optimal KLT Image Compression

在线阅读下载全文

作  者:奚宁[1] 翁默颖[1] 

机构地区:[1]华东师范大学电子科学技术系

出  处:《华东师范大学学报(自然科学版)》1996年第3期63-71,共9页Journal of East China Normal University(Natural Science)

摘  要:在图象变换编码领域,K—L变换是最小均方误差意义上的最佳变换,但是变换矩阵随图象内容而不同,且计算复杂,速度慢。本文选择了合理的计算自协方差矩阵的特征矢量的方法,以削减计算时间。同时提出将模式识别引入K—L变换的一种新的图象压缩的方法,用精选的模式集训练BP神经网络,使之在计算中将各个子图象正确归类,以选择合适的变换矩阵。这一方法成功地降低了计算复杂性,并且回避了病态矩阵问题。它具有高压缩比和低复杂性的特点。The opimal linear transformation for image coding with respect to minimizing the mean square error(MSE) is the Karhunen-loeve transformation(KLT). However, KLT matrix specializes to the processed images, and the computation is quite slow and expensive.In this paper, a well-formaed method to perform adaptive calculation of the eigenvectors of the covariance matrix is proposed to reduce computing time, and a new approach of K-L transforms using pattern recognition is proposed. A set of visual patterns was designed as sample set to train a BP network. The algorithm use the trained network to recognize the pattern number of a block image, and use the corresponding metrix to compress the image.The algorithm is successful to solve the computational complexity problem and to avoid the ill-conditioning of the covariance matrix. It offers high compression ratio and low complexity.

关 键 词:K-L变换 特征矢量 模式识别 图象压缩 图象处理 

分 类 号:TN919.8[电子电信—通信与信息系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象