审计数据质量研究:从审计取证的视角  被引量:11

Quality of Audit Data: A Perspective of Evidence

在线阅读下载全文

作  者:王昊[1] 朱文明[2] 

机构地区:[1]东南大学经济管理学院,南京210096 [2]南京审计学院审计信息工程重点建设实验室,南京210036

出  处:《南京大学学报(自然科学版)》2007年第1期29-34,共6页Journal of Nanjing University(Natural Science)

基  金:国家自然科学基金(70571038);国家863项目(2005AA1Z2140);江苏省高校哲学社会科学基金项目(06SJB63009)

摘  要:审计数据质量是数据审计的基本理论问题,研究审计数据质量对完善和发展计算机审计理论与实践具有重要意义.从审计取证的视角分析了审计数据的需求特征,认为在数据审计模式下,审计数据是审计证据的重要来源,计算机审计的主要目的是以较低的成本获得高质量的审计证据.因此,审计数据与审计取证的需求具有一致性.审计数据质量直接影响审计取证的过程与结果.数据质量需求可以分解为审计师取证过程的需求与审计证据质量需求两个方面.并在此基础上构建了审计数据质量的特征模型,利用一系列关键指标、次级指标,与约束性指标描述了审计数据的质量特征.Quality of audit data is a fundamental factor of audit risk, and relative researches have become increasingly important under the computerized environment. This article first makes a hypothesis that audit data is the electronic data extracted from the audit application system in order to gain high-quality evidence with relatively low cost. On the basis of the hypothesis, the article studies the quality requirement of audit data from the perspective of audit evidence. Before the study, the author reviews recent studies in related areas. Data quality requirement is divided into two aspects: evidence collection process and result evidence. In the evidence collection process, data should satisfy the audit requirement of collecting and using data at relatively low cost, which means the data should be collectible, verifiable, easy to understand and anlyze. As for the result evidence, according to the audit theory, audit evidence should be adequate, appropriate, relevant, relaible, economic and material. As the source of evidence, the data should be correct, complete, authentic and unique. Two restraint indicators are also dicussed: economics and materiality, which will help auditors to decide which data should be considered in their task. All the quality indicators consist of a model of series system. Any change in the individual indicator will change the audit quality as a whole.

关 键 词:审计数据质量 审计取证 电子数据审计 计算机审计 

分 类 号:F239.1[经济管理—会计学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象