用修正的F-展开法求解(n+1)维Sine-Gordon方程  被引量:9

Solution of (n+1)-dimensional Sine-Gordon equation with modified F-expansion method

在线阅读下载全文

作  者:卢殿臣[1] 洪宝剑[1] 田立新[1] 

机构地区:[1]江苏大学非线性科学研究中心,江苏镇江212013

出  处:《兰州理工大学学报》2007年第1期139-142,共4页Journal of Lanzhou University of Technology

基  金:国家自然科学基金(10071033);江苏省自然科学基金(BK20022003);教育部骨干教师基金(2002-383)

摘  要:用一个未知函数的变换将(n+1)维Sine-Gordon方程转化为新未知函数及其偏导数为变元的多项式型的非线性偏微分方程.在拟设法、齐次平衡法和Jacobi椭圆函数法的基础上,借助Mathematica软件和修正的F-展开法,求出了(n+1)维SG方程的Weierstrass椭圆函数解、Jacobi椭圆函数表示的双周期波解,研究了极限情况下解的退化形式,利用数学软件绘出了部分解对应的图形.研究表明,许多解在欧氏变换下是等价的.By means of a transformation of unknown function, the (n+1)-dimensional Sine-Gordon equation was converted into a nonlinear partial differential equation of a polynomial type with a new unknown function and its partial derivatives. Using the software Mathematica and modified F-expansion method, the Weierstrass elliptic functions solutions, double periodic wave solutions expressed by Jacobi elliptic functions for the (n +1)-dimensional Sine-Gordon equation were obtained, on the base of analogic method, homogeneous balance method and Jacobi method. In the limit cases, the degenerate solutions were researched and their some corresponding graphics drawn with Mathematica were given. It was shown by the study that many of the solutions were equivalent for Euclid transformation.

关 键 词:修正的F-展开法 (n+1)维Sine-Gordon方程 周期波解 JACOBI椭圆函数 孤立波解 

分 类 号:O175.2[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象