CONCURRENT PRODUCT PORTFOLIO PLANNING AND MIXED PRODUCT ASSEMBLY LINE BALANCING  

CONCURRENT PRODUCT PORTFOLIO PLANNING AND MIXED PRODUCT ASSEMBLY LINE BALANCING

在线阅读下载全文

作  者:BRYAN April HU S Jack KOREN Yoram 

机构地区:[1]Department of Mechanical Engineering, University of Michigan, Ann Arbor, USA

出  处:《Chinese Journal of Mechanical Engineering》2007年第1期96-99,共4页中国机械工程学报(英文版)

摘  要:Reconfigurable products and manufacturing systems have enabled manufacturers to provide "cost effective" variety to the market. In spite of these new technologies, the expense of manufacturing makes it infeasible to supply all the possible variants to the market for some industries. Therefore, the determination of the right number of product variantsto offer in the product portfolios becomes an important consideration. The product portfolio planning problem had been independently well studied from marketing and engineering perspectives. However, advantages can be gained from using a concurrent marketing and engineering approach. Concurrent product development strategies specifically for reconfigurable products and manufacturing systems can allow manufacturers to select best product portfolios from marketing, product design and manufacturing perspectives. A methodology for the concurrent design of a product portfolio and assembly system is presented. The objective of the concurrent product portfolio planning and assembly system design problem is to obtain the product variants that will make up the product portfolio such that oversupply of optional modules is minimized and the assembly line efficiency is maximized. Explicit design of the assembly system is obtained during the solution of the problem. It is assumed that the demand for optional modules and the assembly times for these modules are known a priori. A genetic algorithm is used in the solution of the problem. The basic premise of this methodology is that the selected product portfolio has a significant impact on the solution of the assembly line balancing problem. An example is used to validate this hypothesis. The example is then further developed to demonstrate how the methodology can be used to obtain the optimal product portfolio. This approach is intended for use by manufacturers during the early design stages of product family design.Reconfigurable products and manufacturing systems have enabled manufacturers to provide "cost effective" variety to the market. In spite of these new technologies, the expense of manufacturing makes it infeasible to supply all the possible variants to the market for some industries. Therefore, the determination of the right number of product variantsto offer in the product portfolios becomes an important consideration. The product portfolio planning problem had been independently well studied from marketing and engineering perspectives. However, advantages can be gained from using a concurrent marketing and engineering approach. Concurrent product development strategies specifically for reconfigurable products and manufacturing systems can allow manufacturers to select best product portfolios from marketing, product design and manufacturing perspectives. A methodology for the concurrent design of a product portfolio and assembly system is presented. The objective of the concurrent product portfolio planning and assembly system design problem is to obtain the product variants that will make up the product portfolio such that oversupply of optional modules is minimized and the assembly line efficiency is maximized. Explicit design of the assembly system is obtained during the solution of the problem. It is assumed that the demand for optional modules and the assembly times for these modules are known a priori. A genetic algorithm is used in the solution of the problem. The basic premise of this methodology is that the selected product portfolio has a significant impact on the solution of the assembly line balancing problem. An example is used to validate this hypothesis. The example is then further developed to demonstrate how the methodology can be used to obtain the optimal product portfolio. This approach is intended for use by manufacturers during the early design stages of product family design.

关 键 词:Product portfolio Assembly system design Assembly line balancing Concurrent design and manufacturing Optimization 

分 类 号:TH16[机械工程—机械制造及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象