基于可信性理论的输电网短期线路检修计划  被引量:52

Short-term Transmission Line Maintenance Scheduling Based on Credibility Theory

在线阅读下载全文

作  者:冯永青[1] 吴文传[1] 张伯明[1] 孙宏斌[1] 何云良[2] 

机构地区:[1]清华大学电机系电力系统国家重点实验室,北京市海淀区100084 [2]金华电力局,浙江省金华市321017

出  处:《中国电机工程学报》2007年第4期65-71,共7页Proceedings of the CSEE

基  金:国家重点基础研究发展计划(973计划)项目(2004CB217904)。

摘  要:传统方法将短期线路检修计划作为单重不确定性优化问题进行建模和求解。但是,架空线路的可靠性指标难以表达现场运行中线路发生故障的可能性,所以需要在短期线路检修计划中对双重不确定性(随机性和模糊性)同时进行建模和求解。可信性理论是基础数学领域最近完成的数学分支,它提供了随机性与模糊性综合评估的严格数学基础。基于可信性理论可建立短期线路检修计划的混合整数随机模糊双重不确定性优化模型(原始模型),其目标函数是检修费用与停电损失费用之和的随机模糊期望值最小。文中利用Benders分解法将原始模型分解为主问题和子问题进行求解:主问题是一个多目标整数规划问题,利用改进Balas算法求解;子问题是一个随机模糊双重不确定性模型,利用可信性理论和直流潮流求解。IEEE-RBTS系统和IEEE-RTS系统的算例表明,文中提出的算法可以综合协调全网的风险和经济目标。同时由于支持原始数据的随机模糊性,使得该算法具有较强的实用性。Traditional short-term line maintenance scheduling is always formulated as a stochastic programming problem. Since possibility of overhead lines' outage does not conform to forced outage rate (FOR), traditional reliability theory is not suitable for short- term line maintenance. In this paper, twofold uncertainty programming that combines randomness and fuzziness is adopted to formulate this problem. Based on credibility theory, which is newly accomplished, short-term line maintenance scheduling is modeled as a mixed-integer random fuzzy programming problem. In this paper we presented an approach based on the generalized Benders decomposition for short line maintenance scheduling. The given formulation consists of a master problem and a sub-problem- The master problem, which is formulated as a deterministic multi-objective integer-programming problem, is solved by an improved Balas implicit enumeration method. The sub-problem is developed as a random fuzzy expected value model. To solve the sub-problem, credibility theory and De load flow are adopted. The test results on IEEE-RTS and IEEE-RBTS demonstrate that the proposed method is flexible enough to accommodate system's security and economy objectives.

关 键 词:电力系统 线路检修 短期计划 可信性理论 随机模糊规划 广义Benders分解法 

分 类 号:TM71[电气工程—电力系统及自动化]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象