T_3-受限图的完全圈可扩性  

Fully Cycle Extensibility of T_3-Confined Graphs

在线阅读下载全文

作  者:雷泓昊[1] 刘绪文[2] 

机构地区:[1]山东师范大学数学科学院,济南250014 [2]山东潍坊教育学院,潍坊250000

出  处:《科学技术与工程》2007年第7期1288-1290,共3页Science Technology and Engineering

基  金:山东省教委科技计划项目(J0IP0I)资助

摘  要:剖分K1,3的一边所得到的图形叫T3,其中3度顶点x0叫做T3的中心。如果图G中的任意一个与T3同构的子图的三个一度顶点xi(i=1,2,3)之间至少有一条边,则称图G为T3-受限图。如果G满足:(1)G的每个顶点都在三圈上,(2)对G中的任意一个圈C,只要V(C)<V(G),就存在G的圈C′,C′满足V(C)V(C′),且│C│′=│C│+1,则称G是完全圈可扩的,C′为C的扩圈。文中证明了:连通、局部连通的T3-受限图是完全圈可扩的。A graph got of one edge of K1,3 , which is called T3 ,the vertex xo ( d(xo) = 3 ) is called centre of T3 . Every subgraph in graph G isomorphic to T3 , if there is at least one edge among three vertices xi ( d(xi ) = 1, i =1,2,3), , then G is called T3 -confined graph. arbitary v∈V(G), if G[N(v)] is k-connected, then G is called k-connected. If G satisfies: (1) arbitary u∈V(G), u is in a 3-cacle, (2) arbitary C in G, as long as V(C) belong to V(G), then exists cycle C' in G, C' satisfies V(C) belong to V(C') and |C'|=|C|+1, then G is fully cycle extensible, C' is called extended pathe of C, It shows that: every connected, locally connected, T3-confined graph is fully cycle extensible.

关 键 词:T3 T3-受限图 完全圈可扩 

分 类 号:O157.5[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象