检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:H.AMIRI M.LASHKARIZADEH BAMI
机构地区:[1]Department of Mathematics,University of Isfahan
出 处:《Acta Mathematica Sinica,English Series》2007年第2期327-340,共14页数学学报(英文版)
基 金:Supported by the office of Graduate Studies and the Center of Excellence for Mathematics of the University of Isfahan
摘 要:A notion of an irreducible representation, as well as of a square integrable representation on an arbitrary locally compact groupoid, is introduced. A generalization of a version of Schur's lemma on a locally compact groupoid is given. This is used in order to extend some well-known results from locally compact groups to the case of locally compact groupoids. Indeed, we have proved that if L is a continuous irreducible representation of a compact groupoid G defined by a continuous Hilbert bundle H = (Hu)u∈G^0, then each Hu is finite dimensional. It is also shown that if L is an irreducible representation of a principal locally compact groupoid defined by a Hilbert bundle (G^0, (Hu),μ), then dimHu = 1 (u ∈ G^0). Furthermore it is proved that every square integrable representation of a locally compact groupoid is unitary equivalent to a subrepresentation of the left regular representation. Furthermore, for r-discrete groupoids, it is shown that every irreducible subrepresentation of the left regular representation is square integrable.A notion of an irreducible representation, as well as of a square integrable representation on an arbitrary locally compact groupoid, is introduced. A generalization of a version of Schur's lemma on a locally compact groupoid is given. This is used in order to extend some well-known results from locally compact groups to the case of locally compact groupoids. Indeed, we have proved that if L is a continuous irreducible representation of a compact groupoid G defined by a continuous Hilbert bundle H = (Hu)u∈G^0, then each Hu is finite dimensional. It is also shown that if L is an irreducible representation of a principal locally compact groupoid defined by a Hilbert bundle (G^0, (Hu),μ), then dimHu = 1 (u ∈ G^0). Furthermore it is proved that every square integrable representation of a locally compact groupoid is unitary equivalent to a subrepresentation of the left regular representation. Furthermore, for r-discrete groupoids, it is shown that every irreducible subrepresentation of the left regular representation is square integrable.
关 键 词:topological groupoid irreducible representation square integrable representation
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.80