检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]华中科技大学计算机学院信息存储系统教育部重点实验室,湖北武汉430074
出 处:《小型微型计算机系统》2007年第3期547-553,共7页Journal of Chinese Computer Systems
基 金:国家自然科学基金(60273073)资助;国家"九七三"课题(2004CB318203)资助.
摘 要:预取是提高存储系统性能的主要手段之一.但现有存储系统的设备层并不知道任何I/O访问的语义信息,因而不能充分利用I/O访问的语义来预取下一时刻要访问的数据,只能利用较简单的方式如I/O访问的局部性、顺序访问和循环访问等特性来实现简单的预测.为此,本文根据存储系统的特点提出了实用且高效的基于连续度的聚类算法来发现密集读请求访问的区域,并采用ARMA时间序列模型来预测密集读请求可能访问的区域及访问时刻,为正确的预取提供了准确的信息.为提高预取的准确性,并采用了动态参数估计的策略.通过大量实验的结果验证了这两种算法的正确性和预测的准确性,能较大的提高存储系统的预取效率.Prefetching is a one of the most important methods to improve storage system performance. Without knowing any I/ O semantics in device layer,it is not easy now for storage system to exploit semantic information and to prefetch the accessed data. Many prefetching policies have to relay on simple patterns such as sequentially,temporal locality and loop references to improve storage system performance. Therefore,according to characteristic of storage system, this paper not only introduces a new sequence degree-based clustering algorithm to find the storage areas which be read frequently,but also adopts ARMA time series model to forecast the storage areas requested frequently by future read requests and their corresponding request time. Moreover,to improve the accuracy forecast,this paper adopts dynamic parameter estimation policy to ARMA model. The results of a large number of simulations validate the accuracy of the clustering algorithm and the preciseness of the ARMA time series model of dynamic parameter estimation policy,and indicate that storage system can greatly improve the efficiency of cache prefetching through applying the clustering algorithm and ARMA time series model.
分 类 号:TP333[自动化与计算机技术—计算机系统结构]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.148.168.26