检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《气象科学》1996年第1期81-85,共5页Journal of the Meteorological Sciences
基 金:"八五"国家科技攻关项目!85-906-05-02
摘 要:Logistic判别分析(LDA)可以认为是Logistic回归的预报形式,LDA还可由广义线性模型(GLIM)大大简化,对所有观测数据,GLIM可用矩阵形式描述,Logstic判别的系数可用Newton-Scoring算法得到,用ML-估计对LDA外生变量的逐步筛选是在对β作似然比检验的基础上进行的(称为逐步Logistic判别分析SLDA)。我们用数值预报产品建立了中国南京3-5月逐日的逐步LOGISTIC动力统计释用天气预报模型。The Logistic Discrimination Analysis (LDA) can be regarded as the forecasting form of the logistic regression. The LDA is greatly facilitated by the well-known class of generalized linear models (GLIM). For all observations the GLIM can be described by a matrix form.The logistic discrimination coefficients can be obtained by Newton-scoring algo-rithm. A Stepwise selection of exogenous variables for LDA (SLDA) using ML estimation is based on likelihood ratio tests for the β. We use the SLDA to model the Dynamic-Statistic Interpretation Forecast Model for weather situation from March to May in Nanjing, China using NWP Products
分 类 号:P45[天文地球—大气科学及气象学] P456.7
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.188.171.53