检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国科学院水利部水土保持研究所
出 处:《水土保持通报》2007年第1期95-98,共4页Bulletin of Soil and Water Conservation
基 金:中国科学院知识创新工程项目"西部生态环境演变规律与水土资源可持续利用研究"(KZCX1-10-04)
摘 要:阐述了在流域产沙预测模型研究中,将试验水平范围的输沙函数的运用范围扩大,产生了数据来源的不确定性或错误的原因在于:模型不完善、重要过程的省略、初始条件的缺乏、初始条件的敏感度、异质性问题、外部动力等。数据来源的不确定性在小尺度、短时间内是能够控制的。大尺度的异质性是使得输沙函数不能仅仅建立在数量化的基础上,而应是系统历史的函数。因此,大尺度的流域产沙模型必须建立在突变量的发现及其相应的动力特征基础上,而不应是试验模型按比例放大。The sources of uncertainty or error that arise in attempting to scale up the results from laboratory sediment transport studies include model imperfection, omission of important processes, lack of knowledge of initial conditions, sensitivity to initial conditions, unresolved heterogeneity and occurrence of external force. The sources of uncertainty that are unimportant or can be controlled on a small scale and over a short time may become important in the application on a large scale and over a long time. Control and repeatability, hallmarks of laboratory experiments, usually lack the large scale characteristic of large systems. Heterogeneity is an important concomitant of size, and tends to make large systems unique. Uniqueness implies that prediction cannot be based upon first-principles quantitative modeling alone, but must be a function of system history as well. In large systems, the construction of successful predictive models is likely to be based upon the discovery of emergent variables and a corresponding dynamics, rather than upon scaling up the results of well-controlled laboratory studies.
分 类 号:P931.3[天文地球—自然地理学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.222