检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《测绘科学》2007年第2期42-43,68,共3页Science of Surveying and Mapping
摘 要:GPS快速定位的数据处理一般是基于整数最小二乘理论,参数估计通过浮点解、整周模糊度的搜索、固定解三个步骤实现。当观测时间较短时,观测量间具有较强的相关性,用LS估计未知数的法方程严重病态,导致模糊度及基线浮点解与其正确值差距较大。本文通过实例研究了不同观测时间的GPS快速定位方程的病态性程度及其对模糊度和基线解的影响,计算结果表明当观测时间少于2分钟时,采用LS结合LAMBDA法难以求出可靠的固定解。The data processing of GPS rapid positioning is usually based on integer least-squares principle,and parameter estimation consists of three steps:float-solution,search of integer ambiguities and fixed-solution.But in case of short observational time spans,the normal equations are seriously ill-conditional,which cause float-solution has large deflection compared with accurate solution.In this paper,the ill-condition extent of normal equations and the effect on the GPS baseline solution in different observational time spans is studied by examples.The results show that it is difficult to acquire reliable solution with LS and LAMBDA method in case of less than two minutes spans.
关 键 词:GPS快速定位 整周模糊度 LAMBDA 病态方程
分 类 号:P228[天文地球—大地测量学与测量工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.145