检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《应用数学和力学》2007年第3期270-280,共11页Applied Mathematics and Mechanics
基 金:国家自然科学基金资助项目(10325210)
摘 要:聚合物材料通常表现为粘弹性性质.为了改进聚合物材料的力学性能,通常将某种无机材料以颗粒或纤维的形式填充到聚合物中,从而得到增强、增韧的聚合物基复合材料.提出了一个新的细观力学模型,用于预测颗粒增强聚合物复合材料的有效粘弹性性质,尤其针对高体积百分比的颗粒夹杂复合材料,该方法基于Laplace变换和双夹杂相互作用的弹性模型.计算了玻璃微珠/ED-6复合材料的有效松弛模量以及恒应变率下的应力应变关系.计算结果表明在高体积百分比下该文方法比基于Mori Tanaka方法预测的粘弹性效应明显减弱.Polymeric materials usually present some viscoelastic behavior. To improve the mechanical behavior of these materials, ceramics materials are often filled into the polymeric materials in form of fiber or particle. A micromechanlcal model was proposed to estimate the overall viscoelastic behavior for particulate polymer composites, especially for high volume concentration of filled particles. The method is based on Laplace transform technique and an elastic model including two-particle interaction. The effective creep corapliance and the stress and swain relation at a constant loading rate were analyzed. The results show that the proposed method predicts a significantly stiffer response than those based on Mori-Tanaka' s method at high volume concentration of particles.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117

