检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]清华大学航天航空学院工程力学系,北京100084
出 处:《清华大学学报(自然科学版)》2007年第2期264-267,共4页Journal of Tsinghua University(Science and Technology)
基 金:国家自然科学基金资助项目(10572075)
摘 要:超音速扩压器性能研究具有非常重要的工程实际应用价值。该文为加深对超音速风洞扩压器内流场结构的理解,采用Fluent软件对“收缩段等直段扩张段”型扩压器流场进行了数值计算,较好模拟了扩压器中由激波/边界层干扰诱导的复杂流场的流场特性,再现了流场中的“激波串”和“伪激波”现象,与文献结果吻合较好。并以比较精细的二维网格计算结果对激波串的形成机理和典型流动结构进行了分析,同时应用于实际工程,对某超音速风洞扩压器不同二喉道长度状态下的扩压效率进行了比较。The diffuser is one of the key devices in a supersonic wind tunnel. The flow field in the diffuser is very complicated and is characterized by strong shock/boundary layer interaction. The phenomenon is called "shock train". In this paper, the flows in diffusers with varying cross sectional areas were simulated using Fluent. The numerical results illustrate the shock/boundary layer interaction and the shock train phenomenon. The formation of the shock train was analyzed. Two main mechanisms affecting the formation of the shock train, namely the shock induced by adverse pressure gradient and the self-stabilizing effects of the flows were identified. The flow structures of the shock train were studied in detail and the flow stabilizing effects of the diffusers were explained in terms of these structures. The influences of the length of the secondary throat on the pressure recovery efficiency were discussed.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.72