检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]北京邮电大学信息工程学院,北京100876 [2]北京邮电大学电信工程学院,北京100876
出 处:《北京邮电大学学报》2007年第1期66-70,共5页Journal of Beijing University of Posts and Telecommunications
基 金:国家自然科学基金项目(60475007);教育部跨世纪人才基金项目
摘 要:挖掘告警序列间关联规则的算法都受到最小支持度的限制,仅能够得到频繁告警序列间的关联规则.对此,提出了一种以高相关度、高置信度为条件,通过聚类找到特征相同的网元告警群,然后基于相关度统计的挖掘算法.实验结果表明,该算法可以高效、准确地挖掘出电信网络告警数据库中频繁和非频繁告警序列间的关联规则.Currently those algorithms to mine the alarm association rules are limited to the minimal support, so that they can only obtain the association rules among the frequently occurring alarm events, To address this problem, a new mining algorithm based on the statistical correlation was proposed, which firstly acquired the alarm net units with the same character by clustering; and then discovered the association rules from both high-frequency and low-frequency alarm events with the high correlativity and the high confidence. Experimental results demonstrated that this algorithm was efficient and accurate to mine the association rules among alarm events with both high-frequency and lowfrequency.
分 类 号:TN929.53[电子电信—通信与信息系统]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28