CARDIOPULMONARY BYPASS WITH AUTOLOGOUS LUNG AS SUBSTITUTE FOR ARTIFICIAL OXYGENATOR ATTENUATES INFLAMMATORY RESPONSIVE INSPIRATORY DYSFUNCTION  

CARDIOPULMONARY BYPASS WITH AUTOLOGOUS LUNG AS SUBSTITUTE FOR ARTIFICIAL OXYGENATOR ATTENUATES INFLAMMATORY RESPONSIVE INSPIRATORY DYSFUNCTION

在线阅读下载全文

作  者:黄惠民 孔祥 王伟 朱德明 张海波 

机构地区:[1]Department of Cardiothoracic Surgery, Shanghai Children's Medical Center, School of Medicine, Shanghai Jiaotong University

出  处:《Journal of Shanghai Second Medical University(Foreign Language Edition)》2007年第1期12-18,共7页上海第二医科大学学报(英文版)

基  金:Supported by grants from National Natural Science Foundation of China (30170929).

摘  要:Objective To study if using autologous lung as a substitute of oxygenator in cardiopulmonary bypass is better than the conventional cardiopulmonary bypass with artificial oxygenator in pulmonary preservation. Methods Twelve piglets were randomly divided into two groups ( n = 6). The isolated lung perfusion model was established. The experimental animals underwent continuous lung perfusion for about 120 rain. While the control animals underwent 90 rain lung ischemia followed by 30 rain reperfusion. Another 12 piglets were randomly divided into two groups ( n =6). The experimental animals underwent bi-ventricular bypass with autologous lung perfusion. While control animals underwent conventional cardiopulmonary bypass with artificial oxygenator. The bypass time and aortic cross clamping time were 135 rain and 60 rain respectively for each animal. The lung static compliance (Cstat), alveolus-artery oxygen difference (PA-aO2 ) , TNF-α, IL-6 and wet to dry lung weight ratio (W/D) were measured. Histological and ultra-structural changes of the lung were also observed after bypass. Results After either isolated lung perfusion or cardiopulmonary bypass, the Cstat decreased, the PA-aO2 increased and the content of TNF-α increased for both groups, but the changes of experimental group were much less than those of control group. The lower W/D ratio and mild pathological changes in experimental group than those in control group were also demonstrated. Conclusion Autologous lung is able to tolerate the nonpulsatile perfusion. It can be used as a substitute to artificial ogygenator in cardiopulmonary bypass to minimize the inflammatory pulmonary injury caused mainly by ischemic reperfusion and interaction of the blood to the non-physiological surface of artificial oxygenator.Objective To study if using autologous lung as a substitute of oxygenator in cardiopulmonary bypass is better than the conventional cardiopulmonary bypass with artificial oxygenator in pulmonary preservation. Methods Twelve piglets were randomly divided into two groups (n=6). The isolated lung perfusion model was established. The experimental animals underwent continuous lung perfusion for about 120 min. While the control animals underwent 90 min lung ischemia followed by 30 min reperfusion. Another 12 piglets were randomly divided into two groups (n=6). The experimental animals underwent bi-ventricular bypass with autologous lung perfusion. While control animals underwent conventional cardiopulmonary bypass with artificial oxygenator. The bypass time and aortic cross clamping time were 135 min and 60 min respectively for each animal. The lung static compliance (Cstat), alveolus-artery oxygen difference (PA-aO_ 2 ), TNF-α, IL-6 and wet to dry lung weight ratio (W/D) were measured. Histological and ultra-structural changes of the lung were also observed after bypass. Results After either isolated lung perfusion or cardiopulmonary bypass, the Cstat decreased, the PA-aO_ 2 increased and the content of TNF-α increased for both groups, but the changes of experimental group were much less than those of control group. The lower W/D ratio and mild pathological changes in experimental group than those in control group were also demonstrated. Conclusion Autologous lung is able to tolerate the nonpulsatile perfusion. It can be used as a substitute to artificial ogygenator in cardiopulmonary bypass to minimize the inflammatory pulmonary injury caused mainly by ischemic reperfusion and interaction of the blood to the non-physiological surface of artificial oxygenator.

关 键 词:cardiopulmonary bypass autologous lung ischemic reperfusion injury 

分 类 号:R563[医药卫生—呼吸系统]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象