Effects of 24-Epibrassinolide on Antioxidant System in Cucumber Seedling Roots Under Hypoxia Stress  被引量:11

Effects of 24-Epibrassinolide on Antioxidant System in Cucumber Seedling Roots Under Hypoxia Stress

在线阅读下载全文

作  者:KANG Yun-yan GUO Shi-rong LI Juan DUAN Jiu-ju 

机构地区:[1]College of Horticulture, Nanjing Agricultural University, Nanjing 210095, P.R.China

出  处:《Agricultural Sciences in China》2007年第3期281-289,共9页中国农业科学(英文版)

摘  要:This article aims to study the effects of exogenous 24-epibrassinolide (EBR) on the changes in ROS, activities of antioxidative enzymes and antioxidants in cucumber (Cucumis sativus L.) seedling roots under hypoxia stress. Seedlings of a hypoxiaresistant cultivar, Lühachun 4, and a hypoxia-sensitive cultivar, Zhongnong 8, were hydroponically grown for 8 d in normoxic or hypoxic nutrient solutions that were added or not added with 10^-3 mg L^-1 EBR. Under hypoxia stress, the ROS levels and the lipid peroxidation were significantly increased in the roots upon exposure to hypoxia stress, which were inhibited by EBR application. The EBR treatment significantly increased the seedlings growth and SOD, APX, GR activities, and contents of AsA and GSH under hypoxia stress. From the results obtained in this study, it can be concluded that oxidative damage on seedling roots by hypoxia stress can be considerably alleviated and the tolerance of plants was elevated.This article aims to study the effects of exogenous 24-epibrassinolide (EBR) on the changes in ROS, activities of antioxidative enzymes and antioxidants in cucumber (Cucumis sativus L.) seedling roots under hypoxia stress. Seedlings of a hypoxiaresistant cultivar, Lühachun 4, and a hypoxia-sensitive cultivar, Zhongnong 8, were hydroponically grown for 8 d in normoxic or hypoxic nutrient solutions that were added or not added with 10^-3 mg L^-1 EBR. Under hypoxia stress, the ROS levels and the lipid peroxidation were significantly increased in the roots upon exposure to hypoxia stress, which were inhibited by EBR application. The EBR treatment significantly increased the seedlings growth and SOD, APX, GR activities, and contents of AsA and GSH under hypoxia stress. From the results obtained in this study, it can be concluded that oxidative damage on seedling roots by hypoxia stress can be considerably alleviated and the tolerance of plants was elevated.

关 键 词:cucumber (Cucumis sativus L.) 24-EPIBRASSINOLIDE SEEDLINGS hypoxia stress antioxidative system lipid peroxidation 

分 类 号:S642.2[农业科学—蔬菜学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象