A Supplement to the Baum-Katz-Spitzer Complete Convergence Theorem  

A Supplement to the Baum-Katz-Spitzer Complete Convergence Theorem

在线阅读下载全文

作  者:Andrew ROSALSKY 

机构地区:[1]Department of Statistics,University of Florida,Gainesville,Florida 32611,USA

出  处:《Acta Mathematica Sinica,English Series》2007年第3期557-562,共6页数学学报(英文版)

基  金:a grant from the Natural Sciences and Engineering Research Council of Canada

摘  要:Let {X, Xn; n≥ 1} be a sequence of i.i.d. Banach space valued random variables and let {an; n ≥ 1} be a sequence of positive constants such thatan↑∞ and 1〈 lim inf n→∞ a2n/an≤lim sup n→∞ a2n/an〈∞Set Sn=∑i=1^n Xi,n≥1.In this paper we prove that∑n≥1 1/n P(||Sn||≥εan)〈∞ for all ε〉0if and only if lim n→∞ Sn/an=0 a.s. This result generalizes the Baum-Katz-Spitzer complete convergence theorem. Combining our result and a corollary of Einmahl and Li, we solve a conjecture posed by Gut.Let {X, Xn; n≥ 1} be a sequence of i.i.d. Banach space valued random variables and let {an; n ≥ 1} be a sequence of positive constants such thatan↑∞ and 1〈 lim inf n→∞ a2n/an≤lim sup n→∞ a2n/an〈∞Set Sn=∑i=1^n Xi,n≥1.In this paper we prove that∑n≥1 1/n P(||Sn||≥εan)〈∞ for all ε〉0if and only if lim n→∞ Sn/an=0 a.s. This result generalizes the Baum-Katz-Spitzer complete convergence theorem. Combining our result and a corollary of Einmahl and Li, we solve a conjecture posed by Gut.

关 键 词:partial sums of i.i.d. Banach space valued random variables Baum-Katz-Spitzer complete convergence theorem almost sure convergence 

分 类 号:O177.2[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象