Strict Feasibility of Variational Inequalities in Reflexive Banach Spaces  被引量:3

Strict Feasibility of Variational Inequalities in Reflexive Banach Spaces

在线阅读下载全文

作  者:Yi Ran HE Xiu Zhen MAO Mi ZHOU 

机构地区:[1]Department of Mathematics, Sichuan Normal University, Chengdu 610068, P. R. China

出  处:《Acta Mathematica Sinica,English Series》2007年第3期563-570,共8页数学学报(英文版)

基  金:NSFC(Grant A0324638);Sichuan Youth Science and Technology Foundation(06ZQ026-013);SZD0406 from Sichuan Province

摘  要:Strict feasibility is proved to be an equivalent characterization of (dual) variational inequalities having a nonempty bounded solution set, provided the mappings involved are stably properly quasimonotone. This generalizes an earlier result from finite-dimensional Euclidean spaces to infinitedimensional reflexive Banach spaces. Moreover, the monotonicity-type assumptions are also mildly relaxed.Strict feasibility is proved to be an equivalent characterization of (dual) variational inequalities having a nonempty bounded solution set, provided the mappings involved are stably properly quasimonotone. This generalizes an earlier result from finite-dimensional Euclidean spaces to infinitedimensional reflexive Banach spaces. Moreover, the monotonicity-type assumptions are also mildly relaxed.

关 键 词:variational inequalities well-positioned sets barrier cone strict feasibility stably properly quasimonotone 

分 类 号:O177.2[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象