北方农牧交错带草原产草量遥感监测模型  被引量:51

Models of grass production based on remote sensing monitoring in northern agro-grazing ecotone

在线阅读下载全文

作  者:杨秀春[1] 徐斌[1] 朱晓华[2] 陶伟国[1] 刘天科[3] 

机构地区:[1]中国农业科学院农业资源与农业区划研究所,北京100081 [2]中国科学院地理科学与资源研究所,北京100101 [3]中国国土资源经济研究院,北京101149

出  处:《地理研究》2007年第2期213-221,I0001,共10页Geographical Research

基  金:国家高技术研究发展专项(863)"草原监测管理系统关键技术研究"(2006AA10Z242)资助

摘  要:及时准确地了解草原产草量的时空配置状况,对于科学合理地利用、管理草地,保证畜牧业生产持续稳定发展、改善生态环境等具有重要的意义。本文利用2005年的MODIS数据和同期野外实测的668个样方产草量数据,分析了5种植被指数和草地生物量之间的相关关系。研究表明:(1)分区模型优于不分区模型,在分区基础上建模更能反映产草量的实际情况;(2)通过线性、非线性模型和BP神经网络模型的对比,得出BP神经网络模型在拟合精度上优于线性和非线性模型,是最适宜监测北方农牧交错带草原产草量的模型;(3)5种植被指数中,NDVI和SAVI与草地生物量之间的拟合精度最高,是研究区最适宜使用的植被指数。There is an ecotone connecting farming region and pasturing region for northern agro-grazing ecotone. Its ecological function consists of conserving water sources, chec- king the wind and fixing the shifting sand, purifying air and maintaining biodiversity. Grassland is not only one of the important ecosystems, but also a background vegetation. Over the past decades, human activities have caused great land cover changes, such as desertification, grassland degradation, and sandy. Therefore, accurate and timely mo- nitoring grassland is of critical importance for utilizing and administering grassland, devel- oping pasturage and improving ecological environment. Using MODIS remote sensing data for the year 2005 and the ground measured grass yield of the corresponding period, linear regression model,non-linear regression models and BP neural network model were respectively established, to express the regression relationships between ground truth data and vegetation indices in this paper. Some conclusions are drawn as follows: (1) Regional models are better than whole-area general models. It is reasonable for the four grassland areas, and the regional models can better describe grass production. (2) Models based on BP neural network are better than linear regression models and non-linear regression models in fitness accuracy. Its decision coefficient increases by more than 3 %, and the highest is 6.92%. Moreover, by precision validating, we find its root mean square error and relative errors are smaller, the models precision increases by more than 2.5 %, and the maximum increases 23. 22%. It is obvious that models based on BP neural network are most suitable for monitoring grass production of northern agro-grazing ecotone, and it can meet the need of estimating of grass production in northern agro-grazing ecotone. (3) The suitable vegetation indices for monitoring grass production of northern agro-grazing ecotone are NDVI and SAVI. (4) With the accumulation of the temporal scales data, further studie

关 键 词:北方农牧交错带 产草量 MODIS遥感 监测 

分 类 号:P237[天文地球—摄影测量与遥感]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象