机构地区:[1]State Key Lab of Water Environment Simulation, School of Environment, Beijng Normal University, 19 Xinjiekouwai Road, Haidian District, Beijing 100101 (China). [2]Institute of Mountain Hazards and Environment, Chinese Academy of Sciences, Chengdu 610051 (China) [3]Appraisal Center of Environment and Engineering, State Environment Protection Administration of China, Beijing 100012 (China)
出 处:《Pedosphere》2007年第2期229-234,共6页土壤圈(英文版)
基 金:Project supported by the National Basic Research Program of China (973 Program) (Nos. 2003CB415104 and 2006CB403301);the National Natural Science Foundation of China (No. 50239020).
摘 要:Typical plants and soils of four elevation zones, mountain tundra (Zone A), Betula ermanii forest (Zone B), mountain dark coniferous forest (Zone C), and mountain coniferous and broad-leaf forest (Zone D), along the vertical gradient of the northern mountain slope of the Changbai Mountain National Nature Reserve, Jilin Province, China, were sampled to study the relationship between plant and soil Pb, and to compare the Pb levels in typical plant types within the same elevation zone. The Pb contents in the soil and plant samples were measured by using a flame atomic absorption spectrophotometer. The results showed that the average plant Pb contents of the four plant elevation zones were lower than the average worldwide level, except for Zone B. Compared with the average level in China or the average worldwide level, the soil Pb levels of the four plant zones were higher, with Zones D and B having the lowest and highest averages, respectively. Plant Pb levels fluctuated from the upper to the lower zones, in a pattern of low-high-low-high, which was the same as that of the soils in the four zones. Furthermore, plant Pb was closely related to soil Pb. Depending on the plant species and plant parts, large differences were found in the Pb levels of typical plants within each zone. In Zone A, Vaccinium uliginosum and Rhododendron redowskianum had higher Pb levels than the other plants. In Zone C, the Pb levels in the branches of both plant species were higher than those in the leaves, which was contrary to Zone D. In Zone B, the Pb levels in the plant parts varied greatly with plant species.Typical plants and soils of four elevation zones, mountain tundra (Zone A), Betula ermanii forest (Zone B), mountain dark coniferous forest (Zone C), and mountain coniferous and broad-leaf forest (Zone D), along the vertical gradient of the northern mountain slope of the Changbai Mountain National Nature Reserve, Jilin Province, China, were sampled to study the relationship between plant and soil Pb, and to compare the Pb levels in typical plant types within the same elevation zone. The Pb contents in the soil and plant samples were measured by using a flame atomic absorption spectrophotometer. The results showed that the average plant Pb contents of the four plant elevation zones were lower than the average worldwide level, except for Zone B. Compared with the average level in China or the average worldwide level, the soil Pb levels of the four plant zones were higher, with Zones D and B having the lowest and highest averages, respectively. Plant Pb levels fluctuated from the upper to the lower zones, in a pattern of low-high-low-high, which was the same as that of the soils in the four zones. Furthermore, plant Pb was closely related to soil Pb. Depending on the plant species and plant parts, large differences were found in the Pb levels of typical plants within each zone. In Zone A, Vaccinium viiginosum and Rhododendron redowskianum had higher Pb levels than the other plants. In Zone C, the Pb levels in the branches of both plant species were higher than those in the leaves, which was contrary to Zone D. In Zone B, the Pb levels in the plant parts varied greatly with plant species.
关 键 词:elevation zone plant Pb Pb uptake soil Pb typical plants
分 类 号:X503.235[环境科学与工程—环境工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...