检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]College of Computer Science and Technology, Zhejiang University, Hangzhou 310027, China
出 处:《Journal of Computer Science & Technology》2007年第2期208-217,共10页计算机科学技术学报(英文版)
基 金:Partially supported by the National Natural Science Foundation of China (Grant No. 60533090), National Science Fund for Distinguished Young Scholars (Grant No. 60525108), the National Grand Fundamental Research 973 Program of China (Grant No. 2002CB312101), Science and Technology Project of Zhejiang Province (Grant Nos. 2005C13032, 2005C11001-05) and China-America Academic Digital Library Project (see www.cadal.zju.edu.cn).
摘 要:Due to the famous dimensionality curse problem, search in a high-dimensional space is considered as a "hard" problem. In this paper, a novel composite distance transformation method, which is called CDT, is proposed to support a fast κ-nearest-neighbor (κ-NN) search in high-dimensional spaces. In CDT, all (n) data points are first grouped into some clusters by a κ-Means clustering algorithm. Then a composite distance key of each data point is computed. Finally, these index keys of such n data points are inserted by a partition-based B^+-tree. Thus, given a query point, its κ-NN search in high-dimensional spaces is transformed into the search in the single dimensional space with the aid of CDT index. Extensive performance studies are conducted to evaluate the effectiveness and efficiency of the proposed scheme. Our results show that this method outperforms the state-of-the-art high-dimensional search techniques, such as the X-Tree, VA-file, iDistance and NB-Tree.Due to the famous dimensionality curse problem, search in a high-dimensional space is considered as a "hard" problem. In this paper, a novel composite distance transformation method, which is called CDT, is proposed to support a fast κ-nearest-neighbor (κ-NN) search in high-dimensional spaces. In CDT, all (n) data points are first grouped into some clusters by a κ-Means clustering algorithm. Then a composite distance key of each data point is computed. Finally, these index keys of such n data points are inserted by a partition-based B^+-tree. Thus, given a query point, its κ-NN search in high-dimensional spaces is transformed into the search in the single dimensional space with the aid of CDT index. Extensive performance studies are conducted to evaluate the effectiveness and efficiency of the proposed scheme. Our results show that this method outperforms the state-of-the-art high-dimensional search techniques, such as the X-Tree, VA-file, iDistance and NB-Tree.
关 键 词:centroid distance κ-nearest-neighbor search start distance
分 类 号:TP393.09[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.229