求解非线性Poisson方程的格子演化算法  

LATTICE EVOLUTION BASED ALGORITHM FOR SOLVING THE NONLINEAR POISSON EQUATION

在线阅读下载全文

作  者:王金库[1] 王沫然 李志信[1] 

机构地区:[1]清华大学航天航空学院 [2]Department of Mechanical Engineering Johns Hopkins University,Baltimore MD 21218,USA

出  处:《工程热物理学报》2006年第2期316-318,共3页Journal of Engineering Thermophysics

基  金:国家自然科学基金重大资助项目(No.59995550-2)

摘  要:非线性Poisson方程在化学、化工及生物等领域有着广泛的应用。本文发展了一种基于格子演化的新算法-格子Poisson方法(LPM),并且给出了Dirichlet边界条件和Neumann边界条件的实现方法。本方法不需要对方程进行线化处理,直接求解非线性方程,适用范围广泛。Dirichlet边界与Neumann边界的数值模拟结果与多重网格法等结果符合很好,验证了该方法在求解非线性Poisson方程的正确性与有效性。本方法非常适合并行计算,并方便扩展到三维情况。The nonlinear Poisson equation play a fundamental role in many biochemical and biophysical processes, such as bio-macromolecules interactions in electrolyte solutions. This paper presents a new lattice evolution based algorithm, Lattice Poisson method (LPM), for solving the nonlinear Poisson equation without any linearization process. The high-order accurate boundary implements involving Dirichlet and Neumann boundaries are proposed in details. The LPM results agree well with the classical partial difference equation solutions, such as the multigrid solutions, for various cases with Dirichlet or Neumann boundary conditions. The present lattice evolution based method is suitable for parallel computing and can be easily extended to three dimensional cases.

关 键 词:非线性Poisson方程 格子Poisson方法 格子BOLTZMANN方法 格子演化 

分 类 号:O55[理学—热学与物质分子运动论]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象