检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]中国地震局地质研究所地震动力学国家重点实验室
出 处:《地震地质》2007年第1期152-160,共9页Seismology and Geology
基 金:国家重大基础研究发展规划项目(2004CB418405);国家自然科学基金(40404007);中国科学院院长奖获得者专项资助金;博士后基金(2005037009)共同资助
摘 要:研究地幔矿物的电导率可以揭示地球内部电导率的分布规律以及地球介质的极化机制。通过对近年来国际上地幔矿物电导率的研究结果进行分析和总结,介绍了矿物的各种影响因素与电导率的关系;对含水和不含水的地幔矿物导电机制进行了区别,不含水矿物的导电机制主要为小极化子,含水矿物的导电机制为自由质子。比较了各种典型的地幔矿物电导率结果并对电导率模型进行了评述和总结,对电导率的研究方向进行了展望。认为水在地幔矿物电导率和电导率剖面中起着重要作用。The knowledge of electrical prosperities of mantle minerals can help us to learn the distribution of the electrical conductivity in the interior of the earth and the polarization mechanism of the earth's material. The experimental results of electrical conductivity of mantle minerals were summarized and analyzed. We reviewed several important influential factors on the electrical conductivity of mantle minerals. The conduction mechanism of dry mantle minerals is different to that of wet mantle minerals. There is a small polaron conduction mechanism for dry mantle minerals, however, the conduction mechanism of wet mantel minerals is attributable to free proton. The results of typical electrical conductivity of mantle minerals were plotted and compared, and several electrical conductivity depth models were also introduced. We concluded that the water should play an important role in the electrical conductivity and the conductivity depth models. At last, we also point out the prospects of research in the future.
分 类 号:P319.2[天文地球—固体地球物理学]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28