Quasi-convex Functions in Carnot Groups  被引量:3

Quasi-convex Functions in Carnot Groups

在线阅读下载全文

作  者:Mingbao SUN Xiaoping YANG 

机构地区:[1]Department of Applied Mathematics, Hunan Institute of Science and Technology, Yueyang 414000, Hu nan, China [2]Department of Applied Mathematics, Nanjing University of Science and Technology, Nanjing 210094, China [3]Department of Applied Mathematics, Nanjing University of Science and Technology, Nanjing 210094, China

出  处:《Chinese Annals of Mathematics,Series B》2007年第2期235-242,共8页数学年刊(B辑英文版)

基  金:Project supported by the Science Foundation for Pure Research of Natural Sciences of the Education Department of Hunan Province (No. 2004c251);the Hunan Provincial Natural Science Foundation of China (No. 05JJ30006);the National Natural Science Foundation of China (No. 10471063).

摘  要:In this paper, the authors introduce the concept of h-quasiconvex functions on Carnot groups G. It is shown that the notions of h-quasiconvex functions and h-convex sets are equivalent and the L^∞ estimates of first derivatives of h-quasiconvex functions are given. For a Carnot group G of step two, it is proved that h-quasiconvex functions are locally bounded from above. Furthermore, the authors obtain that h-convex functions are locally Lipschitz continuous and that an h-convex function is twice differentiable almost everywhere.

关 键 词:h-Quasiconvex function Carnot group Lipschitz continuity 

分 类 号:O152[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象