Generalized n-idempotents and Hyper-generalized n-idempotents  被引量:2

Generalized n-idempotents and Hyper-generalized n-idempotents

在线阅读下载全文

作  者:邓春源 李启慧 杜鸿科 

机构地区:[1]College of Mathematics and Information Science,Shaanxi Normal University,Xi'an,710062 School of Mathematics Science,South China Normal University,Guangzhou,510631 [2]College of Mathematics and Information Science,Shaanxi Normal University,Xi'an,710062

出  处:《Northeastern Mathematical Journal》2006年第4期387-394,共8页东北数学(英文版)

基  金:The NNSF(10571113)of Shaanxi Province,Chins.

摘  要:For an integer n ≥2, we say that an operator A is an n-idempotent if A^n = A; A is a generalized n-idempotent if A^n = A^*; A is a hyper-generalized n. idempotent if A^n = A^+. The set of all n-idempotents, all generalized n-idempotents and all hyper-generalized n-idempotents are denoted by In(H), gIn(H) and HgIn(H), respectively. In this note, we obtain a chain of proper inclusions gIn(H) belong to HgIn(H) belong to In+2(H).For an integer n ≥2, we say that an operator A is an n-idempotent if A^n = A; A is a generalized n-idempotent if A^n = A^*; A is a hyper-generalized n. idempotent if A^n = A^+. The set of all n-idempotents, all generalized n-idempotents and all hyper-generalized n-idempotents are denoted by In(H), gIn(H) and HgIn(H), respectively. In this note, we obtain a chain of proper inclusions gIn(H) belong to HgIn(H) belong to In+2(H).

关 键 词:IDEMPOTENT generalized inverse normal operator 

分 类 号:O177.6[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象