检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]School of Mathematical Sciences of Qingdao University,Qingdao,266071 [2]School of Mathematics and Computational Science of Anhui University,Hefei,230039
出 处:《Northeastern Mathematical Journal》2006年第4期433-440,共8页东北数学(英文版)
基 金:The NNSF(10371101 and 10371061)of China
摘 要:Let R be a ring. A right R-module M with S = End(MR) is called a quasi AP-injective module, if, for any s C S, there exists a left ideal Xs of S such that ls(ker s) = Ss+Xs. Let M be a quasi AP-injective module which is a self-generator. We show that for such a module, if S is semiprime, then every maximal kernel of S is a direct summand of M. Furthermore, if ker(a1) lohtain in ker(a2a1) lohtain in ker(a3a2a1) lohtain in... satisfy the ascending conditions for any sequence al, a2, a3,… ∈ S, then S is right perfect. In this paper, we give a series of results which extend and generalize results on AP-injective rings.Let R be a ring. A right R-module M with S = End(MR) is called a quasi AP-injective module, if, for any s C S, there exists a left ideal Xs of S such that ls(ker s) = Ss+Xs. Let M be a quasi AP-injective module which is a self-generator. We show that for such a module, if S is semiprime, then every maximal kernel of S is a direct summand of M. Furthermore, if ker(a1) lohtain in ker(a2a1) lohtain in ker(a3a2a1) lohtain in... satisfy the ascending conditions for any sequence al, a2, a3,… ∈ S, then S is right perfect. In this paper, we give a series of results which extend and generalize results on AP-injective rings.
关 键 词:quasi AP-injective module AP-injective ring self-generator
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.15