检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:张晓星[1] 唐炬[1] 孙才新[2] 周倩[1] 许中荣[1]
机构地区:[1]重庆大学电气工程学院高电压与电工新技术教育部重点实验室,重庆400044 [2]重庆大学电气工程学院高电压与电工新技术教育部重点实验,室重庆400044
出 处:《仪器仪表学报》2007年第4期597-602,共6页Chinese Journal of Scientific Instrument
基 金:国家自然科学基金(50577069);重庆市自然科学基金(CSTC2005BB3170)资助项目
摘 要:根据气体绝缘组合电器(GIS)设备内部绝缘缺陷产生局部放电的特点,设计了4种典型的GIS缺陷模型,采用甚高频高速采集大量局部放电样本,构造了局部放电图谱;以差盒维数和多重分形理论为基础,给出了基于差盒维数的多重分形计算方法;提出了一种基于多重分形特征的GIS局部放电图谱特征提取方法,对局放图像求取了相应的差盒维数、多重分形维数及放电重心特征,最后将提取的特征量通过RBF神经网络进行分类,识别结果显示本文方法有效地提高了GIS局部放电4种缺陷的识别率。Aiming at the internal isolation defects in were designed. The GIS gray intensity images were GIS and PD characteristics, four kinds of GIS defection models constructed based on mass discharge specimens gathered by the ultra-high frequency and high speeds systems. The multi-fractal dimensions were founded based on the box-counting dimension and muhi-fractal theories. The GIS gray intensity image extraction method based on the muhi-fractal characteristics is putted forward. The box-counting dimension,muhi-fractal dimensions and discharge centrobaric characteristics of the PD pictures are also extracted, and the characteristic variables are classified by RBF network. The identification results show that the proposed method can effectively improve the discrimination rates for four kinds of defects in PD
分 类 号:TM835[电气工程—高电压与绝缘技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.195