Mechanism of Breakdown in Laminar-Turbulent Transition of Incompressible Boundary Layer on a Flat Plate  被引量:10

Mechanism of Breakdown in Laminar-Turbulent Transition of Incompressible Boundary Layer on a Flat Plate

在线阅读下载全文

作  者:唐洪涛 罗纪生 周恒 

机构地区:[1]School of Mechanical Engineering, Tianjin University

出  处:《Transactions of Tianjin University》2007年第2期79-87,共9页天津大学学报(英文版)

基  金:Supported by National Natural Science Foundation of China (No.90205021);Liu Hui Center of Applied Mathematics ,Nankai Universityand Tianjin University

摘  要:Temporal mode direct numerical simulation was done for the process of laminar-turbulent transition in an incompressible boundary layer on a flat plate. The analysis of the results showed that during the breakdown process of laminar-turbulent transition, the modification of the mean flow profile by the disturbances led to a remarkable change in its stability characteristics, manifested in the significant enlargement of the linear unstable zone and the maximum amplification rate, and led to that many more disturbances were excited and enhanced rapidly, correspondingly the turbulent energy also increased rapidly, and the mean flow profiles evolved swiftly from laminar to turbulent. It was also found that if the oblique waves in the initial disturbances did not form symmetrical pairs, the subsequent span-wise mean velocities would, in general, be nonzero due to nonlinear interaction, which would have a great effect on the stability characteristics and also implied that the turbulence obtained by direct numerical simulation might not be fully a random process.Temporal mode direct numerical simulation was done for the process of laminar-turbulent transition in an incompressible boundary layer on a flat plate. The analysis of the results showed that during the breakdown process of laminar-turbulent transition, the modification of the mean flow profile by the disturbances led to a remarkable change in its stability characteristics, manifested in the significant enlargement of the linear unstable zone and the maximum amplification rate, and led to that many more disturbances were excited and enhanced rapidly, correspondingly the turbulent energy also increased rapidly, and the mean flow profiles evolved swiftly from laminar to turbulent. It was also found that if the oblique waves in the initial disturbances did not form symmetrical pairs, the subsequent span-wise mean velocities would, in general, be nonzero due to nonlinear interaction, which would have a great effect on the stability characteristics and also implied that the turbulence obtained by direct numerical simulation might not be fully a random process.

关 键 词:boundary layer TRANSITION direct numerical simulation BREAKDOWN 

分 类 号:O357.4[理学—流体力学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象