自适应联合小波去噪算法  被引量:4

Adaptive Denoising Algorithm Based on United Wavelets

在线阅读下载全文

作  者:郭蔚[1] 陈雅颂[2] 

机构地区:[1]北京大学数学科学学院 [2]天津工业大学理学院,天津300160

出  处:《吉林大学学报(信息科学版)》2007年第2期145-150,共6页Journal of Jilin University(Information Science Edition)

基  金:河北省自然科学基金资助项目(F2004000179)

摘  要:对于传统小波去噪方法,由于选用了单个的小波基,很难兼顾图像的平滑区域、边缘和纹理部分。而对于多小波基的去噪方法,尽管选择多个具有不同性质的小波基,但已有的文献中只是简单地取其算术平均,没有很好地体现小波基的多样性,造成了丢失细节与过平滑的后果。针对图像的非均匀性以及每个小波基支撑区间的不同,提出了一种自适应联合小波去噪算法,对图像中的不同区域和每个小波基处理的不同结果赋予不同的权系数,这样就充分发挥了每个小波基的作用,取得了满意的实验结果。Wavelet denoising is a popular technique in digital image processing. With traditional wavelet denoising methods, it is hard to deal with, simultaneously, smooth regions, edges and textures using a single wavelet base. Even with the use of multiple wavelet bases of different properties, in existing literature, only the mean values are applied in the process and the differences among the bases are not used properly. This leads to the loss of some details and the over-smoothness of an image. An adaptive denoising algorithm is proposed based on united wavelets which are determined by non-evenness of images and different support sets of the wavelets. A weighted mean is used and the weights on individual wavelet bases are chosen by processing different regions. The differences of wavelet bases play important roles in this method and the experimental results are quite satisfactory.

关 键 词:小波去噪 多小波 纹理区域 

分 类 号:TN911.4[电子电信—通信与信息系统] TP391[电子电信—信息与通信工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象