基于纹理和位置特征的麦田杂草识别方法  被引量:36

Weed Detection Method in Wheat Field Based on Texture and Position Features

在线阅读下载全文

作  者:曹晶晶[1] 王一鸣[1] 毛文华[2] 张小超[2] 

机构地区:[1]中国农业大学信息与电气工程学院 [2]中国农业机械化科学研究院

出  处:《农业机械学报》2007年第4期107-110,共4页Transactions of the Chinese Society for Agricultural Machinery

基  金:国家"863"高技术研究发展计划资助项目(项目编号:2003AA209012;2003AA209040)

摘  要:以化学防除适期麦田杂草为研究对象,对利用条播作物的位置和纹理特征识别田间杂草的方法进行了研究。根据条播作物小麦作物行的间距相对固定等位置特征,利用植物像素直方图法确定作物行的中心线和行宽,并识别行间杂草。然后,以作物行中心为基准来选取纹理块,计算量化级数为8级的H颜色空间的共生矩阵,提取5个纹理特征参数,利用K均值聚类法判别分析各块的类别来识别行内杂草。研究结果表明,杂草的正确识别率约为93%,作物的错误识别率约为7%。Take the weeds in wheat fields as the research object, a method of weed detection by using the texture and position features was studied. According to the position feature of drilled crops that were regularly sown as a constant row space, the pixel-histogram method was used to determine the central line and the width of crop row. As a result, weeds between crop rows were detected. Moreover, the block of texture was selected on the basis of the central line of crop row. The co-occurrence matrixes of the H color space that was quantified 8 levels were computed. Based on that, five texture parameters were extracted. Then, the K-means clustering method was used to recognize weeds within crop rows. The result of research showed that the correct classification of weeds was 93% and the mistake classification of crops was 7%.

关 键 词:杂草识别 纹理特征 颜色共生矩阵 位置特征 

分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象