检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:曹晶晶[1] 王一鸣[1] 毛文华[2] 张小超[2]
机构地区:[1]中国农业大学信息与电气工程学院 [2]中国农业机械化科学研究院
出 处:《农业机械学报》2007年第4期107-110,共4页Transactions of the Chinese Society for Agricultural Machinery
基 金:国家"863"高技术研究发展计划资助项目(项目编号:2003AA209012;2003AA209040)
摘 要:以化学防除适期麦田杂草为研究对象,对利用条播作物的位置和纹理特征识别田间杂草的方法进行了研究。根据条播作物小麦作物行的间距相对固定等位置特征,利用植物像素直方图法确定作物行的中心线和行宽,并识别行间杂草。然后,以作物行中心为基准来选取纹理块,计算量化级数为8级的H颜色空间的共生矩阵,提取5个纹理特征参数,利用K均值聚类法判别分析各块的类别来识别行内杂草。研究结果表明,杂草的正确识别率约为93%,作物的错误识别率约为7%。Take the weeds in wheat fields as the research object, a method of weed detection by using the texture and position features was studied. According to the position feature of drilled crops that were regularly sown as a constant row space, the pixel-histogram method was used to determine the central line and the width of crop row. As a result, weeds between crop rows were detected. Moreover, the block of texture was selected on the basis of the central line of crop row. The co-occurrence matrixes of the H color space that was quantified 8 levels were computed. Based on that, five texture parameters were extracted. Then, the K-means clustering method was used to recognize weeds within crop rows. The result of research showed that the correct classification of weeds was 93% and the mistake classification of crops was 7%.
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:3.145.175.71