遗传σ-meso紧空间  被引量:1

Hereditarily σ-Mesocompact Spaces

在线阅读下载全文

作  者:曹金文[1] 贾永进[1] 杨建康[1] 

机构地区:[1]成都理工大学应用数学系,四川成都610059

出  处:《江西师范大学学报(自然科学版)》2007年第1期17-20,共4页Journal of Jiangxi Normal University(Natural Science Edition)

摘  要:获得了如下结果:(1)对任何空间X,下列各条等价:(ⅰ)X是遗传σ-meso紧的;(ⅱ)X的每个散射分解有一个σ-紧有限的开膨胀;(ⅲ)X的每个单调递减的闭集族{Fα:α<γ}有一个σ-紧有限的开集族V=∪n∈ωVn使得α<γ,X-Fα=∪{V∈V:V∩Fα=Φ};(ⅳ)X的每个单调递增的开集族U={Uα:α<γ}有一个σ-紧有限的开加细V=∪n∈ωVn使得α<γ,Uα=∪{V∈V:VUα};(ⅴ)X的每个单调递增的开覆盖U={Uα:α<γ}有一个σ-紧有限的开加细V=∪n∈ωVn使得α<γ,Uα=∪{V∈V:VUα}.(2)设X是遗传σ-meso紧空间且Y有一个σ-紧有限的基,则X×Y是遗传σ-meso紧的.In this paper we shall prove the following result: (1)For every space X,the followings are equivalent: (ⅰ)X is hereditarily σ-mesocompact; (ⅱ)Every scattered partition of X has a σ-compact finite open expansion; (ⅲ)Every monotone decreasing family {Fα:α〈γ} of close sets of X has a σ-compact finite open family V=∪n∈ωVn such that,for every α〈γ,X-Fα=∪{V∈V:V∩Fα=Φ}; (ⅳ)Every monotone increasing family U={Uα:α〈γ} of open sets of X has a σ-compact finite open refinement V=∪n∈ωVn such that,for every α〈γ,Uα=∪{V∈V:V blong to Uα}; ( V ) Every monotone increasing family U={Uα:α〈γ} of open cover of X has a σ-compact finite open refinement V= Un∈ω Vn nsuch that, for every α〈γ,Uα= U { V∈V:V belong to Uα}; (2)If X is hereditarily σ-meso compact space and Y has a bace of σ-compact finite , then X × Y is hereditarily σ-mesocompact space.

关 键 词:遗传σ-meso紧 散射分解 σ-紧有限的开膨胀 

分 类 号:O189.11[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象