迭代粒子群算法及其在间歇过程鲁棒优化中的应用  被引量:3

Iterative Particle Swarm Algorithm and Its Application to Robust Optimization of Batch Process

在线阅读下载全文

作  者:李赣平[1] 邵惠鹤[1] 

机构地区:[1]上海交通大学自动化系,上海200030

出  处:《信息与控制》2007年第2期230-234,共5页Information and Control

基  金:国家自然科学基金资助项目(60504033)

摘  要:针对无状态独立约束和终端约束的间歇过程鲁棒优化问题,将迭代方法与粒子群优化算法相结合,提出了迭代粒子群算法.对于该算法,首先将控制变量离散化,用标准粒子群优化算法搜索离散控制变量的最优解.然后在随后的迭代过程中将基准移到刚解得的最优值处,同时收缩控制变量的搜索域,使优化性能指标和控制轨线在迭代过程中不断趋于最优解.算法简洁、可行、高效,避免了求解大规模微分方程组的问题.对一个间歇过程的仿真结果证明了迭代粒子群算法可以有效地解决无状态独立约束和终端约束的间歇过程鲁棒优化问题.An iterative particle swarm algorithm is proposed for the robust optimization problem of batch processes without state independent and end-point constraints, which combines the iteration method and the particle swarm optirhization algorithm together. For the algorithm, the control variables are discretized firstly and the standard particle swarm optimization algorithm is used to search for the best solution of the discretized control variables. Second, the benchmark is moved to the acquired optimal values in the subsequent iterations and the searching space gets con- tracted a't the same time; hence the optimization performance index and control profile can achieve the best value gradually through iterations. The algorithm is simple, feasible and efficient, and avoids the problem of solving largescale differential equation group. The simulation results of a batch process shows that the iterative particle swarm algorithm can soive the robust optimization problems of batch processes effectively if there is no state independent and end-point constraints.

关 键 词:迭代粒子群算法 间歇过程 鲁棒优化 

分 类 号:TP273[自动化与计算机技术—检测技术与自动化装置]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象