检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:冯丹[1] 韩晓娜[1] 赵文娟[1] 生甡[1] 杨红[1] 方立群[1] 曹务春[1]
机构地区:[1]军事医学科学院微生物与流行病研究所流行病学研究室,北京100071
出 处:《疾病控制杂志》2007年第2期140-143,共4页Chinese Journal of Disease Control and Prevention
基 金:欧盟第六框架(SP22-CT-2004-003824);国家自然科学基金(30590370;30590374);北京市自然科学基金(7061005)
摘 要:目的通过对1995年1月~2004年4月中国大陆法定报告传染病逐月发病率数据的分析,研究其变化规律,建立预测与监测的ARIMA时间序列模型。方法利用时间序列模型中的自回归滑动平均混合模型ARIMA,考虑非季节效应和季节效应,分析中国法定报告传染病发病率的变化趋势和周期性,模型参数估计采用非线性最小二乘法,应用残差和赤池信息量准则(AIC)评价模型的优劣。1995~2004年我国内地法定报告传染病逐月发病率的数据用于建立模型,2005年1月~2006年4相应数据用于模型检验。结果分析结果显示,法定报告传染病发病以年为周期,一年中6~9月为高发月,尤其是8月和7月最为严重。ARIMA(0,1,0)(0,1,0)12模型是法定报告传染病拟合的最佳模型,其拟合残差的方差为2.28,外推预测的平均绝对误差为0.34。利用预测值的95%置信区间建立了我国内地法定报告传染病发病率变化的监测控制线,用于其发病情况的预测与预报。结论对传染病发病率历史数据进行时间序列分析是用于传染病监测的一个重要的工具。所建立的ARIMA模型适用于对中国大陆法定报告传染病发病率预测与监测。该模型具有一定的实用价值,并可以应用于其他传染病的监测和异常变化的检测。Objective To develop the model for forecasting and surveilling the spreading of notifiable infectious diseases in China's Mainland. Methods Using time-series methods, ARIMA (0, 1, 0) (0, 1, 0)12 model was developed for purpose of forecasting and surveillance of notifiable infectious disease in China's Mainland. The model was based on the reporting data of these diseases in China's Mainland from 1995 to 2004, and it was tested by the data from January, 2005 to April, 2006. Results The changes of incidence rate of the notifiable infectious diseases in China's Mainland presented a yearly periodicity, and showed that the incidence rate from April to September exceeded the monthly average of it. The residuals sum of square of the ARIMA model was 2.28 for incidence rate of the notifiable infectious disease from 1995 to 2004, and the mean error of the model was 0.34, The model could further be used to draw a control chart for surveillance of the disease. Conclusions Time series methods applied to historical reporting data of infectious disease are an important tool for infectious disease surveillance. The ARIMA model is suitable to forecast report incidence rate of notifiable infectious diseases in China's Mainland, Our approach potentially has a high practical value for the notifiable infectious diseases in forecasting and surveillance, and it can be generalized to other diseases to develop automated surveillance system and capable of detecting anomalies in disease pattern.
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.28