检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]西安交通大学电气工程学院,陕西省西安市710049
出 处:《电力系统自动化》2007年第9期1-5,77,共6页Automation of Electric Power Systems
基 金:国家重点基础研究发展计划(973计划)资助项目(2004CB217905)~~
摘 要:内点割平面算法(IPCPM)集中了割平面法和内点法的优点,非常适于求解大规模系统的离散优化问题,但是研究发现内点法在求解松弛的线性规划问题时,如果问题具有多重解,最优解会收敛到凸多面体的最优面的内部,此时IPCPM会由于无法得到正确的最优基信息来生成割平面而失效。在此基础上,文中提出了一种通用的最优基判别准则,解决了原算法失效的问题,提高了算法的鲁棒性。通过对IEEE测试系统的数值计算,表明改进后的算法能正确处理最优解的各种情况,显著扩大了IPCPM的应用范围。The interior point cutting plane method (IPCPM) possesses both the advantages of cutting plane method and interior point method, so it is suitable for solving discrete optimization problems of large scale system. But in research it is found that if the problem has multiple solutions, the optimal solutions of interior point method will converge to the interior of the optimal face, and cutting planes can not be generated correctly due to the failure of identification of optimal base, Which lead to the failure of IPCPM. A new general optimal base identification method is presented in this paper to solve the problem, which improves the robustness of the algorithm.. The simulation results of IEEE test systems indicate that the improved algorithm can properly handle various types of optimal solutions and significantly enlarge the application field of IPCPM.
分 类 号:TM744[电气工程—电力系统及自动化]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.166