Dimensional Properties of Fractional Brownian Motion  被引量:1

Dimensional Properties of Fractional Brownian Motion

在线阅读下载全文

作  者:Dong Sheng WU Yi Min XIAO 

机构地区:[1]Department of Statistics and Probability, A-413 Wells Hall, Michigan State University, East Lansing, MI 48824, USA

出  处:《Acta Mathematica Sinica,English Series》2007年第4期613-622,共10页数学学报(英文版)

基  金:Research partially supported by NSF Grant DMS-0404729

摘  要:Let B^α = {B^α(t),t E R^N} be an (N,d)-fractional Brownian motion with Hurst index α∈ (0, 1). By applying the strong local nondeterminism of B^α, we prove certain forms of uniform Hausdorff dimension results for the images of B^α when N 〉 αd. Our results extend those of Kaufman for one-dimensional Brownian motion.Let B^α = {B^α(t),t E R^N} be an (N,d)-fractional Brownian motion with Hurst index α∈ (0, 1). By applying the strong local nondeterminism of B^α, we prove certain forms of uniform Hausdorff dimension results for the images of B^α when N 〉 αd. Our results extend those of Kaufman for one-dimensional Brownian motion.

关 键 词:fractional Brownian motion Hausdorff dimension uniform dimension results strong local nondeterminism 

分 类 号:O211[理学—概率论与数理统计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象