A Construction of Multiresolution Analysis on Interval  

A Construction of Multiresolution Analysis on Interval

在线阅读下载全文

作  者:Di Rong CHEN Dao Hong XIANG 

机构地区:[1]Department of Mathematics, and LMIB, Beijing University of Areonautics and Astronautics, Beijing 100083, P. R. China

出  处:《Acta Mathematica Sinica,English Series》2007年第4期705-710,共6页数学学报(英文版)

基  金:Research supported in part by NSF of China under Grant 10571010 and 10171007

摘  要:We present a concrete method of constructing multiresolution analysis on interval. The method generalizes the corresponding results of Cohen, Daubechies and Vial [Appl. Comput. Harmonic Anal., 1(1993), 54-81]. By the use of the subdivision operator, the expressions of the constructed functions are more compact. Furthermore, the method reveals more clearly some properties of multiresolution analysis with certain approximation order.We present a concrete method of constructing multiresolution analysis on interval. The method generalizes the corresponding results of Cohen, Daubechies and Vial [Appl. Comput. Harmonic Anal., 1(1993), 54-81]. By the use of the subdivision operator, the expressions of the constructed functions are more compact. Furthermore, the method reveals more clearly some properties of multiresolution analysis with certain approximation order.

关 键 词:Multiresolution analysis Refinable function Approximation order Subdivision operator 

分 类 号:O211[理学—概率论与数理统计]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象