Global Poincaré Inequalities on the Heisenberg Group and Applications  被引量:1

Global Poincaré Inequalities on the Heisenberg Group and Applications

在线阅读下载全文

作  者:Yu Xin DONG Guo Zhen LU Li Jing SUN 

机构地区:[1]Department of Mathematics, Fudan University, Shanghai 200433, P. R. China [2]Department of Mathematics, Beijing Normal University, Beijing 100875, P. R. China [3]Department of Mathematics, Wayne State University, Detroit, MI 48202, USA

出  处:《Acta Mathematica Sinica,English Series》2007年第4期735-744,共10页数学学报(英文版)

基  金:The first author is supported by Zhongdian grant of NSFC;a global grant at Wayne State University and by NSF of USA

摘  要:Let f be in the localized nonisotropic Sobolev space Wloc^1,p (H^n) on the n-dimensional Heisenberg group H^n = C^n ×R, where 1≤ p ≤ Q and Q = 2n + 2 is the homogeneous dimension of H^n. Suppose that the subelliptic gradient is gloablly L^p integrable, i.e., fH^n |△H^n f|^p du is finite. We prove a Poincaré inequality for f on the entire space H^n. Using this inequality we prove that the function f subtracting a certain constant is in the nonisotropic Sobolev space formed by the completion of C0^∞(H^n) under the norm of (∫H^n |f| Qp/Q-p)^Q-p/Qp + (∫ H^n |△H^n f|^p)^1/p. We will also prove that the best constants and extremals for such Poincaré inequalities on H^n are the same as those for Sobolev inequalities on H^n. Using the results of Jerison and Lee on the sharp constant and extremals for L^2 to L(2Q/Q-2) Sobolev inequality on the Heisenberg group, we thus arrive at the explicit best constant for the aforementioned Poincaré inequality on H^n when p=2. We also derive the lower bound of the best constants for local Poincaré inequalities over metric balls on the Heisenberg group H^n.Let f be in the localized nonisotropic Sobolev space Wloc^1,p (H^n) on the n-dimensional Heisenberg group H^n = C^n ×R, where 1≤ p ≤ Q and Q = 2n + 2 is the homogeneous dimension of H^n. Suppose that the subelliptic gradient is gloablly L^p integrable, i.e., fH^n |△H^n f|^p du is finite. We prove a Poincaré inequality for f on the entire space H^n. Using this inequality we prove that the function f subtracting a certain constant is in the nonisotropic Sobolev space formed by the completion of C0^∞(H^n) under the norm of (∫H^n |f| Qp/Q-p)^Q-p/Qp + (∫ H^n |△H^n f|^p)^1/p. We will also prove that the best constants and extremals for such Poincaré inequalities on H^n are the same as those for Sobolev inequalities on H^n. Using the results of Jerison and Lee on the sharp constant and extremals for L^2 to L(2Q/Q-2) Sobolev inequality on the Heisenberg group, we thus arrive at the explicit best constant for the aforementioned Poincaré inequality on H^n when p=2. We also derive the lower bound of the best constants for local Poincaré inequalities over metric balls on the Heisenberg group H^n.

关 键 词:Heisenberg group Sobolev inequalities Poincaré inequalities best constants 

分 类 号:O152[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象