检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Yu Xin DONG Guo Zhen LU Li Jing SUN
机构地区:[1]Department of Mathematics, Fudan University, Shanghai 200433, P. R. China [2]Department of Mathematics, Beijing Normal University, Beijing 100875, P. R. China [3]Department of Mathematics, Wayne State University, Detroit, MI 48202, USA
出 处:《Acta Mathematica Sinica,English Series》2007年第4期735-744,共10页数学学报(英文版)
基 金:The first author is supported by Zhongdian grant of NSFC;a global grant at Wayne State University and by NSF of USA
摘 要:Let f be in the localized nonisotropic Sobolev space Wloc^1,p (H^n) on the n-dimensional Heisenberg group H^n = C^n ×R, where 1≤ p ≤ Q and Q = 2n + 2 is the homogeneous dimension of H^n. Suppose that the subelliptic gradient is gloablly L^p integrable, i.e., fH^n |△H^n f|^p du is finite. We prove a Poincaré inequality for f on the entire space H^n. Using this inequality we prove that the function f subtracting a certain constant is in the nonisotropic Sobolev space formed by the completion of C0^∞(H^n) under the norm of (∫H^n |f| Qp/Q-p)^Q-p/Qp + (∫ H^n |△H^n f|^p)^1/p. We will also prove that the best constants and extremals for such Poincaré inequalities on H^n are the same as those for Sobolev inequalities on H^n. Using the results of Jerison and Lee on the sharp constant and extremals for L^2 to L(2Q/Q-2) Sobolev inequality on the Heisenberg group, we thus arrive at the explicit best constant for the aforementioned Poincaré inequality on H^n when p=2. We also derive the lower bound of the best constants for local Poincaré inequalities over metric balls on the Heisenberg group H^n.Let f be in the localized nonisotropic Sobolev space Wloc^1,p (H^n) on the n-dimensional Heisenberg group H^n = C^n ×R, where 1≤ p ≤ Q and Q = 2n + 2 is the homogeneous dimension of H^n. Suppose that the subelliptic gradient is gloablly L^p integrable, i.e., fH^n |△H^n f|^p du is finite. We prove a Poincaré inequality for f on the entire space H^n. Using this inequality we prove that the function f subtracting a certain constant is in the nonisotropic Sobolev space formed by the completion of C0^∞(H^n) under the norm of (∫H^n |f| Qp/Q-p)^Q-p/Qp + (∫ H^n |△H^n f|^p)^1/p. We will also prove that the best constants and extremals for such Poincaré inequalities on H^n are the same as those for Sobolev inequalities on H^n. Using the results of Jerison and Lee on the sharp constant and extremals for L^2 to L(2Q/Q-2) Sobolev inequality on the Heisenberg group, we thus arrive at the explicit best constant for the aforementioned Poincaré inequality on H^n when p=2. We also derive the lower bound of the best constants for local Poincaré inequalities over metric balls on the Heisenberg group H^n.
关 键 词:Heisenberg group Sobolev inequalities Poincaré inequalities best constants
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.117