An Improvement of the Hardy-Hilbert Type Integral Inequalities and an Application  

An Improvement of the Hardy-Hilbert Type Integral Inequalities and an Application

在线阅读下载全文

作  者:HE Le-ping CHEN Xiao-yu SHANG Xiao-zhou 

机构地区:[1]Department of Mathematics and Computer Science, Jishou University, Jishou 416000, China [2]Department of Mathematics and Computer Science, Normal College, Jishou University, Jishou 416000, China

出  处:《Chinese Quarterly Journal of Mathematics》2007年第1期68-74,共7页数学季刊(英文版)

摘  要:In this paper, it is shown that Hardy-Hilbert's integral inequality with parameter is improved by means of a sharpening of Hoeder's inequality. A new inequality is established as follows:∫^∞α∫^∞α f(x)g(y)/(x+y+2β)dxdy〈π/sin(π/p){∫^∞α f^p(x)dx}1/p·{∫^∞αgq(x)dx}1/q·(1-R)^m,where R=(Sp (F, h) - Sq (G, h))^2, m= min (1/p, 1/q). As application; an extension of Hardy-Littlewood's inequality is given.

关 键 词:Hardy-Hilbert's type inequality Hardy-Littlewood's inequality Hoelder's inequality beta function 

分 类 号:O178[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象