检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
机构地区:[1]东南大学学习科学研究中心,南京210096 [2]东南大学无线电工程系,南京210096
出 处:《中国图象图形学报》2007年第5期847-853,共7页Journal of Image and Graphics
基 金:国家自然科学基金项目(60472058;60503023);江苏省自然科学基金项目(BK2005407);教育部博士点基金项目(20050286001)
摘 要:为了更有效地提取图像的局部特征,提出了一种基于2维偏最小二乘法(two-dimensional partial leastsquare,2DPLS)的图像局部特征提取方法,并将其应用于面部表情识别中。该方法首先利用局部二元模式(localbinary pattern,LBP)算子提取一幅图像中所有子块的纹理特征,并将其组合成局部纹理特征矩阵。由于样本图像被转化为局部纹理特征矩阵,因此可将传统PLS方法推广为2DPLS方法,用来提取其中的判别信息。2DPLS方法通过对类成员关系矩阵的构造进行相应的修改,使其适应样本的矩阵形式,并能体现出人脸局部信息重要性的差异。同时,对于类成员关系协方差矩阵的奇异性问题,也推导出了其广义逆的解析解。基于JAFFE人脸表情库的实验结果表明,该方法不但可以有效地提取图像局部特征,并能取得良好的表情识别效果。In this paper, we proposed a local feature extraction method based on a two-dimensional partial least square (2DPLS) for images, and then applied it in the facial expression recognition. Firstly, this method combines texture features of all sub windows of an image extracted by local binary pattern(LBP) into a local texture feature matrix. In order to extract the discrimination information, the traditional PLS method is extended to 2DPLS method since the images have been transformed to local texture matrices. In the 2DPLS method, the class-membership matrix is modified to adapt to the matrix form of the samples and represents the difference of the importance of the local image information. Meanwhile, the analytic form of the generalized inverse of class-membership matrix is derived. The experiment results based on JAFFE database show that the proposed method can effectively extract the local feature from images and achieve good performance in facial expression recognition.
关 键 词:偏最小二乘法 2维偏最小二乘法 局部特征提取 局部二元模式 面部表情识别算法
分 类 号:TP391.41[自动化与计算机技术—计算机应用技术]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.40