检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:彭小云[1] 叶万军[2] 折学森[3] 赵娟[1] 刘钊[1]
机构地区:[1]武警工程学院建筑工程系,陕西西安710086 [2]西安科技大学地质与环境工程系,陕西西安710054 [3]长安大学特殊地区公路工程教育部重点实验室,陕西西安710064
出 处:《交通运输工程学报》2007年第2期70-75,共6页Journal of Traffic and Transportation Engineering
基 金:陕西省交通科技项目(03-18K)
摘 要:为合理考虑路基沉降预测时诸多影响因素的不确定性与随机性,提出基于神经网络范例推理的路基沉降预测模型。以同类工程的成功经验为基础,建立了基于神经网络的沉降范例检索模型,在范例相似度计算中,引入归一化效用函数,通过神经网络的学习,建立当前沉降范例与沉降源范例之间的相似关系,最终实现当前沉降范例的沉降预测。对黄土沟壑区湿软路基沉降预测结果表明,该模型具有较高的预测准确性,预测值与实测值绝对误差小于10%。In view of the randomness and uncertainty of effect factors in subgrade settlement prediction, a prediction model based on case-based reasoning integrated with neural network was presented. In the model, a model for indexing subgrade settlement cases with neural network was set up, the successful experiences of similar engineerings were analyzed, and a new kind of utility function to calculate the similarities of the cases were introduced. The similarity relationship among the settlement cases was established by training neural network, so that the most similar base case to settlement target case was found out. Settlement prediction result of wettest-soft loess subgrade in ravine regions shows that the absalute errors between predicted data and actual ones are less than 10%, and the model has high prediction precision. 3 tabs, 2 figs, 10 refs.
关 键 词:路基工程 湿软黄土路基 沉降预测 范例推理 神经网络
分 类 号:U416.169[交通运输工程—道路与铁道工程]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249