Projectively flat Asanov Finsler metric  

Projectively flat Asanov Finsler metric

在线阅读下载全文

作  者:HAN Jing-wei YU Yao-yong 

机构地区:[1]Department of Mathematics, Zhejiang University, Hangzhou 310027, China [2]School of Science, Hangzhou Dianzi University, Hangzhou 310028, China

出  处:《Journal of Zhejiang University-Science A(Applied Physics & Engineering)》2007年第6期963-968,共6页浙江大学学报(英文版)A辑(应用物理与工程)

基  金:Project (No. 10571154) supported by the National Natural Science Foundation of China

摘  要:In this work, we study the Asanov Finsler metric F=α(β^2/α^2+gβ/α+1)^1/2exp{(G/2)arctan[β/(hα)+G/2]}, where α=(αijy^iy^i)^1/2 is a Riemannian metric and β=by^i is a 1-fom, g∈(-2,2), h=(1-g^2/4)^1/2, G=g/h. We give the necessary and sufficient condition for Asanov metric to be locally projectively flat, i.e., α is projectively flat and ,Sis parallel with respect to α. Moreover, we proved that the Douglas tensor of Asanov Finsler metric vanishes if and only if β is parallel with respect to α.In this work, we study the Asanov Finsler metric F=α(β2/α2+gβ/α+1)1/2exp{(G/2)arctan[β/(hα)+G/2]}, where α=(αijyiyj)1/2 is a Riemannian metric and β=biyj is a 1-form, g∈(-2,2), h=(1-g2/4)1/2, G=g/h. We give the necessary and sufficient condition for Asanov metric to be locally projectively flat, i.e., α is projectively flat and β is parallel with respect to α. Moreover, we proved that the Douglas tensor of Asanov Finsler metric vanishes if and only if β is parallel with respect to α.

关 键 词:Exponential Finsler metric Projectively flat (α β)-metrics Douglas tensor 

分 类 号:O186.1[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象