A Large Deviation Principle for the Risk Process with Varying Premium  

A Large Deviation Principle for the Risk Process with Varying Premium

在线阅读下载全文

作  者:HE Xiaoxia MING Ruixing HU Yijun 

机构地区:[1]School of Mathematics and Statistics, Wuhan University,Wuhan 430072, Hubei, China [2]School of Mathematics and Information Sciences, JiangxiNormal University, Nanchang 330022, Jiangxi, China

出  处:《Wuhan University Journal of Natural Sciences》2007年第3期412-416,共5页武汉大学学报(自然科学英文版)

基  金:Supported by the National Natural Science Foundation of China (70273029)

摘  要:Let u ∈ R ,for any ω 〉 0, the processes X^ε = {X^ε(t); 0 ≤ t≤ 1} are governed by the following random evolution equations dX^ε(t)= b(X^ε(t),v(t))dt-εdSt/ε, where S={St; 0≤t≤1} is a compound Poisson process, the process v={v(t); 0≤t≤1} is independent of S and takes values in R^m. We derive the large deviation principle for{(X^ε,v(.)); ε〉0} when ε↓0 by approximation method and contraction principle, which will be meaningful for us to find out the path property for the risk process of this type.Let u ∈ R ,for any ω 〉 0, the processes X^ε = {X^ε(t); 0 ≤ t≤ 1} are governed by the following random evolution equations dX^ε(t)= b(X^ε(t),v(t))dt-εdSt/ε, where S={St; 0≤t≤1} is a compound Poisson process, the process v={v(t); 0≤t≤1} is independent of S and takes values in R^m. We derive the large deviation principle for{(X^ε,v(.)); ε〉0} when ε↓0 by approximation method and contraction principle, which will be meaningful for us to find out the path property for the risk process of this type.

关 键 词:large deviations varying premium compound Pois-son process 

分 类 号:O211.9[理学—概率论与数理统计] F832.5[理学—数学]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象