Gas-kinetic numerical method for solving mesoscopic velocity distribution function equation  被引量:9

Gas-kinetic numerical method for solving mesoscopic velocity distribution function equation

在线阅读下载全文

作  者:Zhihui Li Hanxin Zhang 

机构地区:[1]National Laboratory for Computational Fluid Dynamics,Beijing 100083, China [2]Hypervelocity Aerodynamics Institute.Mianyang 621000, China

出  处:《Acta Mechanica Sinica》2007年第2期121-132,共12页力学学报(英文版)

基  金:the National Natural Science Foundation of China(90205009 and 10321002);the National Parallel Computing Center in Beijing.

摘  要:A gas-kinetic numerical method for directly solving the mesoscopic velocity distribution function equation is presented and applied to the study of three-dimensional complex flows and micro-channel flows covering various flow regimes. The unified velocity distribution function equation describing gas transport phenomena from rarefied transition to continuum flow regimes can be presented on the basis of the kinetic Boltzmann-Shakhov model equation. The gas-kinetic finite-difference schemes for the velocity distribution function are constructed by developing a discrete velocity ordinate method of gas kinetic theory and an unsteady time-splitting technique from computational fluid dynamics. Gas-kinetic boundary conditions and numerical modeling can be established by directly manipulating on the mesoscopic velocity distribution function. A new Gauss-type discrete velocity numerical integra- tion method can be developed and adopted to attack complex flows with different Mach numbers. HPF paral- lel strategy suitable for the gas-kinetic numerical method is investigated and adopted to solve three-dimensional complex problems. High Mach number flows around three-dimensional bodies are computed preliminarilywith massive scale parallel. It is noteworthy and of practical importance that the HPF parallel algorithm for solving three-dimensional complex problems can be effectively developed to cover various flow regimes. On the other hand, the gas-kinetic numerical method is extended and used to study micro-channel gas flows including the classical Couette flow, the Poiseuillechannel flow and pressure-driven gas flows in twodimensional short micro-channels. The numerical experience shows that the gas-kinetic algorithm may be a powerful tool in the numerical simulation of microscale gas flows occuring in the Micro-Electro-Mechanical System (MEMS).A gas-kinetic numerical method for directly solving the mesoscopic velocity distribution function equation is presented and applied to the study of three-dimensional complex flows and micro-channel flows covering various flow regimes. The unified velocity distribution function equation describing gas transport phenomena from rarefied transition to continuum flow regimes can be presented on the basis of the kinetic Boltzmann-Shakhov model equation. The gas-kinetic finite-difference schemes for the velocity distribution function are constructed by developing a discrete velocity ordinate method of gas kinetic theory and an unsteady time-splitting technique from computational fluid dynamics. Gas-kinetic boundary conditions and numerical modeling can be established by directly manipulating on the mesoscopic velocity distribution function. A new Gauss-type discrete velocity numerical integra- tion method can be developed and adopted to attack complex flows with different Mach numbers. HPF paral- lel strategy suitable for the gas-kinetic numerical method is investigated and adopted to solve three-dimensional complex problems. High Mach number flows around three-dimensional bodies are computed preliminarilywith massive scale parallel. It is noteworthy and of practical importance that the HPF parallel algorithm for solving three-dimensional complex problems can be effectively developed to cover various flow regimes. On the other hand, the gas-kinetic numerical method is extended and used to study micro-channel gas flows including the classical Couette flow, the Poiseuillechannel flow and pressure-driven gas flows in twodimensional short micro-channels. The numerical experience shows that the gas-kinetic algorithm may be a powerful tool in the numerical simulation of microscale gas flows occuring in the Micro-Electro-Mechanical System (MEMS).

关 键 词:Gas kinetic theory . Velocity distributionfunction . Boltzmann model equation .Spacecraft flows . Micro-scale gas flows 

分 类 号:V211.25[航空宇航科学与技术—航空宇航推进理论与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象