检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
出 处:《控制与决策》2007年第6期652-656,662,共6页Control and Decision
基 金:国家自然科学基金项目(70371015);江苏省自然科学基金项目(BK2005135);江苏省高校自然科学研究基金项目(05KJB5200665)
摘 要:对基于差别矩阵的核求解方法而言,差别矩阵的规模是直接影响核求解效率的关键因素.为此,针对不平衡分类数据情况,提出一种基于多差别矩阵的核求解算法.该算法先按决策属性值划分对象集,进而建立任意两个不同对象集对应的差别矩阵,形成多差别矩阵,从而求出核.各差别矩阵因不平衡分类数据可有效降低其规模,提高核的求解效率.理论分析和实验结果表明算法是有效可行的.For the method based on discernibility matrix for computing a core, reducing the size of discernibility matrix is the key for improving the performance of computation of a core, Therefore, an algorithm (AMDMC) based on multi-discernibility matrix is introduced to computation of a core for the case of unbalanced classification data. By the decision attribute's value, the all objects are partitioned into some subsets. For any two different subsets, a subdiscernibility matrix is created. Finally, the multi-discernibility matrix is obtained and a core is acquired. Each subdiscernibility matrix holds a small space because of unbalanced classification data, so the AMDMC algorithm is in high efficiency. Theoretical analysis and experiment results show the effectiveness of the algorithm.
分 类 号:TP311[自动化与计算机技术—计算机软件与理论]
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:216.73.216.249