检索规则说明:AND代表“并且”;OR代表“或者”;NOT代表“不包含”;(注意必须大写,运算符两边需空一格)
检 索 范 例 :范例一: (K=图书馆学 OR K=情报学) AND A=范并思 范例二:J=计算机应用与软件 AND (U=C++ OR U=Basic) NOT M=Visual
作 者:Zhang Yan Lü Shanwei Gao Wenjun
机构地区:[1]School of Electronics and Information Engineering, Beijing University of Aeronautics and Astronautics, Beijing 100083, China [2]Institute of Electronics, Chinese Academy of Sciences, Beijing 100080, China
出 处:《Journal of Electronics(China)》2007年第3期380-383,共4页电子科学学刊(英文版)
基 金:the National Natural Science Foundation of China (No. 60271012);Research Foundation of ZTE Corporation.
摘 要:A new method to reduce the numerical dispersion of the three-dimensional Alternating Di-rection Implicit Finite-Difference Time-Domain (3-D ADI-FDTD) method is proposed. Firstly,the numerical formulations of the 3-D ADI-FDTD method are modified with the artificial anisotropy,and the new numerical dispersion relation is derived. Secondly,the relative permittivity tensor of the artificial anisotropy can be obtained by the Adaptive Genetic Algorithm (AGA). In order to demon-strate the accuracy and efficiency of this new method,a monopole antenna is simulated as an exam-ple. And the numerical results and the computational requirements of the proposed method are com-pared with those of the conventional ADI-FDTD method and the measured data. In addition the re-duction of the numerical dispersion is investigated as the objective function of the AGA. It is found that this new method is accurate and efficient by choosing proper objective function.A new method to reduce the numerical dispersion of the three-dimensional Alternating Direction Implicit Finite-Difference Time-Domain (3-D ADI-FDTD) method is proposed. Firstly, the numerical formulations of the 3-D ADI-FDTD method are modified with the artificial anisotropy, and the new numerical dispersion relation is derived. Secondly, the relative permittivity tensor of the artificial anisotropy can be obtained by the Adaptive Genetic Algorithm (AGA). In order to demonstrate the accuracy and efficiency of this new method, a monopole antenna is simulated as an example. And the numerical results and the computational requirements of the proposed method are compared with those of the conventional ADI-FDTD method and the measured data. In addition the reduction of the numerical dispersion is investigated as the objective function of the AGA. It is found that this new method is accurate and efficient by choosing proper objective function.
关 键 词:Finite-Difference Time-Domain (FDTD) Alternating-Direction Implicit (ADI) Numerical dispersion Artificial anisotropy Genetic Algorithm (GA)
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在载入数据...
正在链接到云南高校图书馆文献保障联盟下载...
云南高校图书馆联盟文献共享服务平台 版权所有©
您的IP:18.222.223.25