Unsupervised Change Detection in Multitemporal SAR Images Using MRF Models  被引量:2

Unsupervised Change Detection in Multitemporal SAR Images Using MRF Models

在线阅读下载全文

作  者:JIANG Liming LIAO Mingsheng ZHANG Lu LIN Hui 

机构地区:[1]Institute of Space and Earth Information Science, The Chinese University of Hong Kong, Shatin, N.T, Hong Kong, China

出  处:《Geo-Spatial Information Science》2007年第2期111-116,共6页地球空间信息科学学报(英文)

摘  要:An unsupervised change-detection method that considers the spatial contextual information in a log-ratio difference image generated from multitemporal SAR images is proposed. A Markov random filed (MRF) model is particularly employed to exploit statistical spatial correlation of intensity levels among neighboring pixels. Under the assumption of the independency of pixels and mixed Gaussian distribution in the log-ratio difference image, a stochastic and iterative EM-MPM change-detection algorithm based on an MRF model is developed. The EM-MPM algorithm is based on a maximiser of posterior marginals (MPM) algorithm for image segmentation and an expectation-maximum (EM) algorithm for parameter estimation in a completely automatic way. The experiment results obtained on multitemporal ERS-2 SAR images show the effectiveness of the proposed method.An unsupervised change-detection method that considers the spatial contextual information in a log-ratio difference image generated from multitemporal SAR images is proposed. A Markov random filed (MRF) model is particularly employed to exploit statistical spatial correlation of intensity levels among neighboring pixels. Under the assumption of the independency of pixels and mixed Gaussian distribution in the log-ratio difference image, a stochastic and iterative EM-MPM change-detection algorithm based on an MRF model is developed. The EM-MPM algorithm is based on a maximiser of posterior marginals (MPM) algorithm for image segmentation and an expectation-maximum (EM) algorithm for parameter estimation in a completely automatic way. The experiment results obtained on multitemporal ERS-2 SAR images show the effectiveness of the proposed method.

关 键 词:change detection multitemporal SAR image Markov random field EM algorithm 

分 类 号:TP751[自动化与计算机技术—检测技术与自动化装置] P237[自动化与计算机技术—控制科学与工程]

 

参考文献:

正在载入数据...

 

二级参考文献:

正在载入数据...

 

耦合文献:

正在载入数据...

 

引证文献:

正在载入数据...

 

二级引证文献:

正在载入数据...

 

同被引文献:

正在载入数据...

 

相关期刊文献:

正在载入数据...

相关的主题
相关的作者对象
相关的机构对象